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Abstract

Open-pit mining, a prevalent surface mining method, is responsible for extracting a sig-

nificant portion of the world’s minerals due to its economic advantages. However, this

technique poses considerable environmental and social challenges. The need for effec-

tive mapping and monitoring of global mining areas is becoming increasingly critical to

assess the associated environmental and anthropological risks.

This research leverages remote sensing and deep learning technologies to monitor and

detect spatio-temporal changes in open-pit mining regions. A comprehensive review

of the literature is undertaken, examining recent studies on the identification of mining

regions, the assessment of environmental impacts, the application of deep learning in

change detection, and the surveillance of activity in surface mining areas. The research

methodology details the creation of a unique dataset, OMS2CD, comprised of Sentinel-2

satellite images of mining regions which have been annotated for change detection. Deep

learning models, including TinyCD, LSNet, and DDPM-CD, are trained on this dataset. To

quantify the levels of activity, a novel metric, the Normalized Difference Temporal Change

Index (NDTCI), is introduced.

The performance of the models, the influence of cloud cover and seasonal variations,

and the impact of utilizing masks for areas of interest is discussed. The application of the

trained models in detecting changes and mapping activity levels in unseen mining sites

is demonstrated through case studies.

The key findings include the strong correlation between the median model prediction and

ground truth data, and the utility of the NDTCI as a normalized measure of activity. In

essence, this research proposes a methodology that utilizes freely accessible data and

deep learning models to monitor surface mining regions by detecting changes in satellite

imagery, serving as a proxy for activity. The NDTCI offers a quantitative approach to

mapping the activity levels of mining sites over time.
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Chapter 1

Introduction

The mining of mineral resources is crucial for many modern industries, yet it can lead to

significant environmental impacts if not properly managed. Open-pit mining (also known

as open-cast mining), which focuses on near-surface deposits, now accounts for over

70% of global mineral production due to its economic advantages over underground min-

ing. However, open-pit mines can cause major disturbances to landscapes and ecosys-

tems. Continuous monitoring of active mining sites is therefore critical for environmental

protection and sustainable development.

Recent advances in Earth observation satellites and deep learning (DL) algorithms pro-

vide new opportunities for automated, large-scale monitoring of mining activity. In partic-

ular, change detection techniques applied to multi-temporal satellite imagery can identify

where surface changes have occurred within mining areas over time. By training deep

neural networks on before-and-after image pairs, surface changes related to mining op-

erations like excavation, road construction, deforestation, and waste dumping may be

detected.

This dissertation investigates state-of-the-art deep learning methods for change detection

using freely available Sentinel-2 multispectral imagery. Focusing on the novel application

of monitoring open-pit mining activity, custom models are trained and tested on a new

dataset tailored to mining land cover changes. Quantitative activity metrics are proposed

based on the predicted surface changes. Case studies demonstrate how these tech-
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niques can map mining expansion and changing activity levels at sites worldwide.

The ability to automatically monitor mining activity supports improved governance and

environmental impact assessment. This research explores how recent advances in deep

learning and open satellite data can be applied to this real-world challenge. The ap-

proaches developed provide new capabilities for transparent monitoring and sustainable

mining practices.

1.1 Background

1.1.1 Open-pit Mining

Open-pit mining is a method of surface mining that focuses on extracting ore deposits

at or near the earth’s surface. It uses a series of horizontal ‘benches’ that are blasted

into the surface. Open-pit mining is commonly used to extract a variety of metallic and

non-metallic elements from the surface, including aluminium, bauxite, copper, iron, coal,

uranium, and phosphate (Altiti et al. 2021). Surface mining methods such as open-pit

mining have a number of comparative advantages over other forms of mineral extrac-

tion. Namely, surface mining is in general more economical than underground methods.

Because of this, surface mining is responsible for approximately 70% of global mineral

production (Haldar 2018, p. 5). Unfortunately, open surface mines can cause a wide

range of environmental and ecological impacts. These include the destruction of natural

ecosystems, soil, water, and air pollution, and impacts on human settlements. Addition-

ally, open-pit mine areas include not only the mine itself (where the minerals are extracted

from the exposed orebody), but also the waste (tailings) dump areas and waste rock

piles. For these reasons, mapping and monitoring global mining areas has become in-

creasingly important for assessing the environmental and anthropological risks of mining

activity (Maus et al. 2022).

1.1.2 Remote Sensing and Monitoring

Very generally, remote sensing (RS) can be defined as “acquiring knowledge from a dis-

tance” (D. Kumar, Singh, and Kaur 2019). One of the most common platforms used for re-
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Figure 1.1: Sentinel-2 aerial image of an open-pit mine facility. Some sites, like this one,

can be of substantial size. This image covers an area of over 36 km2.

mote sensing in the 21st century is some type of observational satellite orbiting the earth.

Satellites are considered to be “spaceborne” remote sensing platforms. In the context

of remote sensing, Earth Observation (EO) is a common term which is focused specif-

ically on observing and studying Earth’s systems. As such, EO satellite technologies

can include those designed for weather and atmosphere monitoring, as well as surface

observation.

Since the launch of the first EO satellite Vanguard 2 by the United States Naval Research

Laboratory, the number of EO satellites has grown rapidly. As of 2020, there were 845

imaging instruments currently operating or planned for launch within the next 15 years.

Such a significant increase in the number of available EO missions has provided count-

less opportunities for EO research in areas such as climate and ecological monitoring,

agriculture, weather forecasting, and more (Q. Zhao et al. 2022). Here, we review the

most common types of remote sensing data available from these EO missions, and how

they can be applied to the task of change detection.
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1.1.3 Types of Remote Sensing Data

There are three broad categories of remote sensing satellite data for EO which are most

commonly used with machine and deep learning applications: Synthetic Aperture Radar

(SAR), multi-spectral, hyper-spectral, and panchromatic (W. Shi et al. 2020, pp. 6–7). In

this section, each of these are defined in more detail.

1.1.3.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an active, rather than passive, EO technology. It uses

radar transmissions to detect information about the earth’s surface terrain. Because of its

active transmission, SAR data is less susceptible to weather conditions and can operate

completely independent of surface lighting from the sun or other sources. Using the

differences in signal phase between multiple radar acquisitions allows for highly sensitive

assessment of terrain changes on the surface. SAR is therefore invaluable for damage

assessment after natural events such as earthquakes (Plank 2014, pp. 3–6). Launched

by the ESA (European Space Agency) in 2014, Sentinel-1 has become one of the most

vital SAR satellite missions1 due to its high revisit frequency and the ease of access to

its mission data (Sentinel-1 - Missions - Sentinel Online 2023).

SAR interferometry (InSAR) is a derivative imaging technology of SAR, which uses the

phase difference between two SAR acquisitions to create a coherence (or correlation)

image. The coherence is a complex phase signal which can be used to identify terrain

elevation and terrain movement (differential SAR interferometry) (Plank 2014, pp. 7–8).

Such coherence images lend themselves readily to surface change detection tasks and

have been used with statistical and deep learning techniques to detect surface changes

over time (Jia and Z. Zhao 2021; Qu et al. 2022; Ebel, Saha, and X. X. Zhu 2021; Canty

et al. 2020).

While SAR has the aforementioned advantages, it is difficult to use in machine and deep

learning applications due to the high amounts of ‘speckle noise’ present in SAR images.

In InSAR, this is largely due to the lack of phase correlation between surfaces such as

1Note that the term ‘satellite mission’ rather than ‘satellite’ is used to refer to the full mission objectives
and goals of a single satellite or a constellation (multiple satellites) designed for the same task.
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vegetation. That is one of the greatest challenge that must be overcome in order to use

InSAR data in DL systems (Jia and Z. Zhao 2021).

1.1.3.2 Multi-spectral

Figure 1.2: Sentinel-2 image with bands 2-7, a true colour image, and a false colour

image (substituting red with the NIR band), from top-left to bottom-right.

The term ‘multi-spectral’ in the context of EO broadly refers to a collection of satellite op-

tical imagery which is collected passively in an array of discrete wavelength bands on the

electromagnetic spectrum (usually ranging from infrared to visible). Two multi-spectral

satellite missions commonly used for land use/land cover mapping are Sentinel-2 and

Landsat-8. Sentinel-2 was launched by the ESA in 2015 as part of the Copernicus initia-

tive, and it is equipped with a multispectral instrument (referred to as MSI). Landsat-8 was

launched in 2013 as a continuation of the USGS Landsat Earth observation programme,

and it is equipped with the Operational Land Imager (OLI) (Mandanici and Bitelli 2016).

Sentinel-2’s data is provided as freely accessible by the ESA. At its peak, it has had a

temporal resolution (or surface region revisit frequency) of only 5 days. Additionally, it

provides 13 bands of optical data, 4 of which (red, green, blue, and near-infrared) are
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at a spatial resolution of 10 metres per pixel2 (example given in Figure 1.2). Because

of its high revisit frequency, it is estimated that it can provide, on average, at least one

cloud-free image per month for all areas that it transits (Mandanici and Bitelli 2016; Phiri

et al. 2020).

1.1.3.3 Hyper-spectral

Hyper-spectral imaging is based on the same technology as multi-spectral, and typically

in a similar wavelength range (visible to infrared). The primary distinction is that hyper-

spectral imagery provides hundreds or thousands of narrow, distinct bands in a single

acquisition. Some hyper-spectral EO missions include Hyperion, HISUI, and PRISMA

which each have over 100 spectral bands in their data (Transon et al. 2018).

While hyper-spectral imagery provides an abundance of spectral information due to its

large number of bands, its abundance of data can make it unwieldy for machine and

deep learning applications. Redundancy in the data and a lack of interpretability of the

high dimensionality of the hyper-spectral data has meant that it has seen less application

in these research areas than the aforementioned multispectral data (W. Shi et al. 2020).

1.1.4 Pixel-based Vegetation and Soil Difference Indices

To assist in remote sensing using satellite data, a number of numerical indices have

been proposed to assist in spatial classification of satellite imagery. One such index, the

Normalised Difference Vegetation Index (NDVI), as shown in Equation 1.1 is commonly

used in EO literature. It was first introduced as a metric in 1974 (Vorovencii 2021, p. 6).

NDVI = RNIR −
RRed

RNIR +RRed
(1.1)

Other such indices include Normalised Difference Water Index (NDWI) (S. Kumar and

Arya 2021, p. 1909), and Soil Adjusted Vegetation Index (SAVI) (Vorovencii 2021, p. 7)

among others. The different indices range from -1 to 1, and provide a normalised metric

of comparison on a pixel-by-pixel basis of measure. These index-based metrics are a

2Metres per pixel (often only given as metres) is commonly used to express the image resolution of
satellite or aerial imagery.
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Figure 1.3: Example image demonstrating an NDVI matrix. Pixels which are more white

represent a higher NDVI, and vice-versa.

type of pixel-based classification of image regions that is calculated using the intensity of

two or more spectral bands. They have the advantages of being easy to interpret, and

fast to calculate. Additionally, they are completely unsupervised and require no training,

unlike machine learning and deep learning methods of classification.

1.1.5 Surface Change Detection

Change detection (CD), in the realm of remote sensing, can be understood as a process

by which certain features are identified through analysis over different time intervals. It

necessitates the use of Geographical Information System (GIS) or EO data to observe

changes that can happen due to human activities or natural events. The identification of

these alterations is achieved by studying images of specific spatial zones over time. It is

an important element in satellite mapping, monitoring environmental shifts, and analysing

changes in land use and land cover (LU/LC).

Change detection can be distilled down to a few distinct approaches: algebraic,

transform-based, classification-based, and ‘advanced’ techniques (Afaq and Manocha

2021; S. Kumar and Arya 2021). Alongside these classification approaches, there are

two primary types of change which have typically been examined: binary and from-to.

Binary CD is concerned only with whether a change has occurred or not, while from-to is

interested in the type of change (e.g. from water to grass) (Bai et al. 2022).

While CD as a field of study has been developing for many years, deep learning-based
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techniques for change detection (DLCD) have been studied mostly within the last decade.

Even so, DLCD has given rise to significant improvements in accuracy over traditional CD

methods (Bai et al. 2022).

1.2 Objectives and Summary

This dissertation project aims to approach open-pit mine activity monitoring from a com-

bined perspective of the aforementioned state-of-the-art methods within a resource-

constrained environment. To achieve this goal, our work primarily focuses on deep learn-

ing methods of change detection which are accessible on freely available computing re-

sources. Besides assessing the methods best suited for open-pit mine monitoring, we

desire to establish a functional approach to activity detection in open-pit mine areas that

can be broadly replicated.

1.2.1 Research Questions

To achieve the aforementioned goals, our research is informed by a collection of research

questions:

1. How can the size, activity level, and changes over time of open-pit mines be mea-

sured using state-of-the-art techniques?

2. What is ‘change’ in the context of activity in open-pit mine areas?

3. What existing DLCD architectures are best suited for this task?

4. Can existing DLCD architectures be adapted to a new data domain using fine-

tuning?

5. Can DLCD be used to monitor and detect the activity level of open-pit mines over

time?

To answer the proposed research questions, this project focuses on deep learning archi-

tectures for binary change detection across bi-temporal3 image pairs. We utilise freely

3In the context of this dissertation, bi-temporal generally refers to a pair of images which represent the
same spatial location at two distinct times.
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available Sentinel-2 data obtained using the Google Earth Engine (GEE) (Gorelick et al.

2017), following a process similar to the one described by (Balaniuk, Isupova, and Reece

2020). Using such data, we produce the first publicly available open-pit mine Sentinel-2

change detection (OMS2CD) dataset, which is used to train and validate a selection of

state-of-the-art change detection architectures.

As a measure of activity for change detection, we propose the Normalised Difference

Temporal Change Index (NDTCI) and demonstrate how it can be used to monitor activity

in surface mine areas. The trained models are then employed in specific case study

areas to measure the NDTCI and evaluate the feasibility of temporal change mapping of

open-pit mines.

For this project, it’s essential to understand that the training and evaluation of the DLCD

model are steps towards our primary objective. Our main aim is to establish a method for

monitoring open-pit mines using Sentinel-2 data. While the DLCD models play a crucial

role in this, the resulting change prediction is just one component of the broader activity

detection process.
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Literature Review

This literature review investigates the state of the art in open-pit/open-cast mine activity

monitoring using remote monitoring technologies. In particular, this is a review of recent

papers in this area, primarily from the last four years. Although monitoring surface mines

for environmental reasons has been a concern for a long time, the amount of literature in

adjacent research areas has grown rapidly with the popularity of deep learning (Bai et al.

2022, p. 3).

Numerous research domains intersect with the objectives of this dissertation. Specifically,

these include identifying illicit mining practices, pinpointing and charting surface mining

zones, detecting changes on the Earth’s surface through satellite imagery, discerning

the environmental repercussions of mining, and tracking surface mining operations. An

exploration of existing literature suggests minimal studies directly align with this disser-

tation’s focus: real-time surveillance of mining sites to gauge their ongoing activity level.

Nevertheless, several contemporary research methods can be adapted to address this

issue.

2.1 Identifying Surface Mining Areas

The automated detection of mining zones holds significant interest for entities focused on

illicit mining activities that are otherwise challenging to oversee and track. For regulatory

bodies with limited resources, several studies offer valuable insights, including (Balaniuk,
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Isupova, and Reece 2020; Kozińska and Górniak-Zimroz 2021; Nava et al. 2022; Gallwey

et al. 2020). These works primarily aim to pinpoint mining operations and compare them

against acknowledged legal activities, facilitating the automated identification of potential

illegal mining. Research in this domain often leverages cost-effective or complimentary

tools and datasets, accommodating resource constraints. This report finds (Balaniuk,

Isupova, and Reece 2020) particularly relevant, as it delves into the utilization of freely

available technologies, such as Google Colaboratory (or ”Colab”) (Google Colaboratory

2023) and Sentinel-2 data from the Google Earth Engine. (Kozińska and Górniak-Zimroz

2021) highlights the lack of research on illicit mining activity monitoring but reviews ex-

isting methodologies employing a variety of technologies, including visual spectrum and

InSAR data. Another notable mention is (T. Chen et al. 2022), which adeptly identifies

mining zones using an adapted U-Net framework. However, they rely on China’s Gaofen-

2 VHR (very-high resolution)1 satellite, which isn’t available for our purposes.

C. Wang et al. use a modified Mask R-CNN to identify mining areas and monitor them as

they change over time. Their approach is successful on the dataset they collected of a

particular region in China. Whether their approach would be applicable to a more diverse

range of geographical areas is not explored (Chunsheng Wang et al. 2020). Zhao et al.

propose a state-of-the-art segmentation algorithm for identifying open-pit mining areas,

and compare the performance of their model over several datasets and against other

segmentation models such as Mask R-CNN (L. Zhao et al. 2022). Their novel proposed

segmentation models consistently outperform Mask-RCNN on their chosen dataset (as

measured using the F1-score). They focus on mining area segmentation, but not tempo-

ral monitoring. Such segmentation approaches have the benefit of being able to identify

previously unknown mining areas and separate them from the surrounding terrain, but

identifying changes over time would require more processing steps.

Shi et al. develop a custom multitask learning framework for land cover classification in

open-pit mining areas, combining CBE-04 and Sentinel-2 satellite data. Their results are

impressive in pinpointing mining zones, but they have not shared their labelled classifica-

1Various terms are used in literature to describe optical satellite data with a resolution approximating 5
metres per pixel or finer. ”VHR” is among the most prevalent. It stands out from sources like Sentinel-2 due
to its enhanced depiction of surface details. Some privately accessible satellite data offer resolutions of 1
metre per pixel or finer.
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tion data (J. Shi et al. 2022). In a similar vein, (Chen Wang, T. Chen, and Plaza 2023)

employ multiscale segmentation and classification on VHR images, generating detailed

land use classification maps for specific mining areas. However, they use private software

for segmentation and keep their data sources confidential. Although both studies aim to

identify extensive open-pit mining zones and their land use, the unavailability of their data

makes it challenging to incorporate their methods into our research.

Two works previously mentioned, (Nava et al. 2022; Gallwey et al. 2020), are primarily

focused on small-scale artisanal mine activity. This activity exists in a unique context and

relies heavily on the availability of VHR data. Both studies utilize U-Net architectures to

identify artisanal mining areas, a methodology that is adopted by numerous works in this

area (Jiang et al. 2022; L. Zhao et al. 2022; Shafique et al. 2022; T. Chen et al. 2022;

Huang et al. 2022). Nava et al. achieved a satisfactory F1-score with their dataset. How-

ever, they do not provide comparative studies due to the novelty of the research domain.

In contrast, Gallwey et al. modify their approach slightly, employing their classifier to

identify land use (comprising mining, vegetation, and ‘built’ zones) and assess land use

alterations over time. Their methodology seems promising and aligns with our objectives

of activity detection. However, that have not made their labelled dataset publicly available.

A number of studies also investigate the idea of identifying illegal mine activity using

InSAR data. One such example uses a novel InSAR processing technique to identify

active mine areas (S. Wang et al. 2020). Their satellite observations are then followed

up by ground-based and UAV missions to confirm their findings. Such an approach is

promising because it utilises an easily replicable statistical process. However, it requires

access to legal mine site survey data in order to properly classify the discovered mining

areas.

Unique in the area of identification is the work by Maus et al., which is a comprehensive

dataset of global mining sites covering an area of 101,583 km2. Unlike the other works

mentioned in this section which use various automatic methods for discovering and cat-

egorising mining areas, they provide a novel dataset which is manually constructed and

delineated using information about known mining sites. The dataset also provides poly-

gon definitions for all mining areas, making it useful for monitoring the exact area occu-
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pied by the mine (Maus et al. 2022). While the Maus et al. dataset is spatially useful

for identifying mining site locations, the database provided by Jasansky et al. goes into

more depth. It provides, where possible, information about the type and quantity of com-

modity produced at the facility, dates for the start and end of production, and waste and

processing capacity, among other fields (Jasansky et al. 2023). For our research goals,

both of these datasets are useful for identifying targets sites for EO data gathering and

observation case studies.

2.2 Surface Mine Environmental Impact Assessments

With regard to assessing the extent of environmental impacts, Zhu et al. utilises a novel

PCA algorithm using a moving window to calculate the index of multiple environmen-

tal indicators around open-pit mining sites. They propose a novel environmental index

(MW-RSEI) which demonstrates that the environmental effects of open-pit mining activity

extends far beyond the immediate vicinity of the damaged surface area of the mine (D.

Zhu et al. 2020). Nascimiento et al. are also primarily concerned with the extent of de-

forestation as surface mining areas expand. They adopt an algorithmic technique which

combines VHR satellite imagery with captured LiDAR (laser imaging, detection, and rang-

ing) in order to segment and classify ground changes (deforestation, re-vegetation, etc.).

Using this technique, they successfully assess the exact land area changes observed

during their investigation period (Nascimento et al. 2020).

Most of the literature that we have found that is concerned with monitoring the environ-

mental impact of mining areas is focused on measuring the vegetation changes over time.

There are a number of case studies such as (Vorovencii 2021; V. Kumar and Yarrakula

2022; Ruifeng et al. 2022; Guo et al. 2022) which focus on vegetative or soil change

indices such as the NDVI. Using vegetation indices has the advantage of being a fairly

robust and proven proxy metric for environmental changes. Combined with the digital

elevation model TanDEM-X, (Wu et al. 2020) achieve excellent change detection perfor-

mance using a number of RS features such as NDVI and NDWI. Kumar and Arya review

algebraic (methods using indices such as NDVI) and DL methods for change detection

and make comparisons in their use-cases and accuracy. They observe that the true accu-
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racy of each method is hard to compare broadly, and that they may be more appropriate

depending on certain factors of the required use-case (S. Kumar and Arya 2021). From

the perspective of environmental monitoring specifically, such algebraic indices are easy

to interpret, though they are still only a proxy measure for environmental activity. Addi-

tionally, such indices are very sensitive to seasonal changes such as vegetative growth

and snow cover.

2.3 General Deep Learning Change Detection

The field of Deep Learning Change Detection (DLCD) aims to automatically detect sur-

face changes in satellite imagery by comparing temporally spaced (before and after) im-

ages of the same geolocation. Bai et al. provide a recent and comprehensive review

of the state of the art in this area. Overall, they find that deep learning methods are

more robust and accurate than traditional statistical and machine learning methods. The

two different branches in the field of change detection look at binary (if the surface has

changed) or from-to (e.g. from vegetation to mine). They find that the two major chal-

lenges facing the area of DLCD methods are 1) insufficient training data and 2) the need

for high computational power. After a thorough comparison of the advantages and disad-

vantages of different DL architectures in change detection, they find that ‘coupled’ DLNN

(deep learning neural network) architectures sustain a performance advantage over ‘sep-

arate’ DLNN architectures. The trade-off is that coupled architectures tend to be more

complex to build and understand (Bai et al. 2022). Following their work, we find that the

direct classification method (DCM) and differencing neural network method (DNNM) to be

the most promising for this project because of their superior performance characteristics.

Another extensive review of the field of DLCD from the same time period is given in (Jiang

et al. 2022). They find that CNN architectures are the most popular DNN architectures

for DLCD, and that these are most often applied to multi-spectral optical data. While

they do not make a performance comparison between the reviewed model architectures,

their description of promising model architectures is thorough and compliments the work

of (Bai et al. 2022). We find again that coupled DLNN architectures such as Siamese

networks show great promise and relevance to our work in this project. While they also
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give a comprehensive list of VHR change detection datasets, we find that these datasets

would not be useful to us without significant downsampling.

While the area of DLCD is still a small subfield, the last few years have seen rapid growth

in the diversity of approaches, catalysed by the growth of DL architectures as a whole.

There are a myriad of different architectural designs, each with their own trade-offs. Here

we review a few of the most recent. Zhang et al. introduce a deep Siamese network that

takes advantage of image transformers for change detection (DSNCoT) in satellite im-

agery. They achieve state-of-the-art results on the multi-season change detection dataset

for general change detection (M. Zhang et al. 2022). Yin et al. also achieve state-of-the-

art performance using a self-attention transformer network (SAGNet) on VHR imagery

obtained from Google Earth. They provide models of various sizes to allow for perfor-

mance trade-off selection (Yin et al. 2023). While such transformer-based architectures

have yielded groundbreaking performance on DLCD datasets, it is important to note that

they are generally less efficient than other approaches due to the increased computa-

tional complexity of self-attention blocks (Keles, Wijewardena, and Hegde 2022).

Two promising DLCD papers that we reviewed use SAR image data rather than visual

spectrum data with their DL models. Qu et al. propose DDNet to perform multi-modal

comparison in the spatial and frequency domain of SAR data. They achieve superior

results on the Ottawa and Yellow River SAR datasets compared with other model archi-

tectures (Qu et al. 2022). They also provide their PyTorch implementation and Google

Colab demo open-source in their GitHub repository. Jia and Zhao propose a novel deep

belief network (gΓ-DBN) to find the differences between bi-temporal SAR data. Also

using the Yellow River dataset, they demonstrate robust performance in binary change

detection (Jia and Z. Zhao 2021).

Because of the lack of available training data in the area of change detection for open-

pit mine surfaces, we are also very interested in recent works which focus on reducing

hardware and training data requirements via efficient architecture designs. TinyCD is a

promising lightweight network based on Siamese U-Net for change detection. It achieves

state-of-the-art accuracy on the WHU-CD and LEVIR-CD datasets while having 13 to

140 times fewer parameters than other models of comparable performance (Codegoni,
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Lombardi, and Ferrari 2022). LSNet also achieves high accuracy on the CDD benchmark

dataset while being over 90% more computationally efficient than other recent models

(Liu, Huaixin Chen, and Z. Wang 2022). While focused less on computational efficiency,

SemiCD is also a more recent model architecture that operates in a semi-supervised

manner and has been shown to achieve comparable benchmark performance while re-

quiring only 10% as much labelled data as other models. Such a drastic reduction in the

requirements for labelled training data lends itself well to the area of DLCD because of

the difficulty of preparing the ground-truth labelled datasets (W. G. C. Bandara and Patel

2022).

Concluding the discussions in this domain, DDPM-CD stands out as a unique approach

to binary DLCD. It leverages a readily available diffusion model, pre-trained on an exten-

sive dataset of over one million unlabelled Sentinel-2 images. The diffusion features are

then fed through a lightweight differencing module to produce a binary change map. It

achieves state-of-the-art performance on a number of CD datasets, including WHU-CD

and LEVIR-CD, and could potentially reduce training requirements compared to other

models because of its pre-trained diffusion backbone (W. G. C. Bandara, Nair, and Patel

2022). We are interested in comparing this approach to some others mentioned in our

review, although it is worth noting that its diffusion model backbone is quite large and may

be difficult to train with limited resources.

2.3.1 Change Detection Datasets

It is noteworthy in this overview to highlight the presence of diverse datasets suitable for

training change detection models. An up-to-date list of available databases and open-

source repositories for change detection using DL is available on GitHub (wenhwu 2023).

Specifically, we find “Sentinel-2 Multitemporal Cities Pairs” (Leenstra et al. 2020), “Onera

Satellite Change Detection” (OSCD) (Daudt et al. 2018) (©2011 IEEE), LEVIR-CD (Hao

Chen and Z. Shi 2020), “Open-pit Mine Change Detection” (OMCD) (Li et al. 2023) and

“Ordos OM Change Detection” (Du et al. 2022) to be particularly relevant datasets to

this dissertation. If fine-tuning is necessary, Sentinel data will be preferable since it is

readily available through online platforms such as Google Earth Engine. (Li et al. 2023)

(©2011 IEEE) and (Du et al. 2022) are also of specific interest since they are the only
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publicly accessible open-pit mine change detection dataset that we have identified in our

review, even though they are using VHR Gaofen satellite and not Sentinel-2 imagery.

As mentioned in the previous model review section, there are many other CD datasets

available for supervised training. However, we have found the difference in the training

domain (the scale and type of image features) of those datasets makes it difficult to train

networks for our specific task of change detection in open-pit mine areas. That challenge

is reviewed in Appendix G.

2.4 Open-pit and Surface Mine Change/Activity Monitoring

This subsection delves into literature closely aligned with the core theme of this disser-

tation. Our exploration yielded only a handful of papers focusing specifically on the lon-

gitudinal monitoring and analysis of individual mines. While related to the discussions

in the preceding subsections, the literature examined here shifts from broad detection to

change detection—concentrating on small alterations over time within the mining area.

Moon and Lee use InSAR data to map the surface changes of dumping sites to a novel

indicator of activity, the “Normalized Difference Activity Index” (NDAI). The study area is a

single iron mine in North Korea, and they utilise the freely available Sentinel-1 SAR data

to perform their research. Most noteworthy is that using this method, they map specific

mine activity over time, and project it onto a digital elevation model (DEM) to show exactly

which areas of the mine surface had changed. Of interest to this dissertation is also the

challenges that they mention, notably that vegetation growth can cause decoherence in

the InSAR data, which can be easily mistaken for mine activity (Moon and Lee 2021).

L. Wang et al. employ a technique similar to that of Moon and Lee, harnessing InSAR

data from Sentinel-1 to observe the NDAI value of a vast mining zone in China over

an extended period of time. By applying linear regression to the time-averaged InSAR

coherence values, they create a map delineating zones of low and high mining activity.

Moreover, they plot the week-by-week NDAI values to study exact spatial transformations

in the mine surface. To validate their NDAI observations, they supplement their findings

with Sentinel-2 visual spectrum data (L. Wang et al. 2021). Their investigation extends

that of Moon and Lee not only by tracking the changes over time, but also circumventing
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the need for a DEM to understand the visual changes. We find both works informative to

this dissertation, as they offer insightful examples of analytical methodologies and spatio-

temporal change mapping.

In our exploration, we identified four papers emphasising the surveillance of open-pit mine

change detection via visual spectrum data.

Du et al. introduce a novel deep learning architecture, DA-UNet++, tailored for identifying

surface changes in VHR imagery. They also curate a novel dataset featuring masked

VHR satellite imagery for change detection to enhance the training of their architecture.

In the end, they demonstrate state-of-the-art performance in change detection for both

open-pit mine and non-mine surface areas. However, while in their paper they advocate

for automated change detection of open-pit mining zones, they refrain from offering a

detailed, quantifiable assessment of activity level based on the identified changes (Du

et al. 2022).

Echoing from our earlier discussions, C. Wang et al. propose a novel framework based

on Mask R-CNN; termed IMRT. Harnessing VHR image data from the Gaofen-1 and

Gaofen-2 satellites, they were able to create high resolution segmentation masks of the

target mine areas. The segmentation masks are then monitored for changes by looking

at the change in mine area over time. Such landscape transformations are mapped to the

DROTL index (damages rate of the topographical landscape), offering a quantitative com-

parison of surface mine environmental impact. Their research specifically underscores

the importance of transfer learning in their technique, deploying a Mask R-CNN model

which was pre-trained on the COCO image dataset (Chunsheng Wang et al. 2020).

Li et al. propose a Siamese architecture for change detection: SMCDNet. Via their novel

methodology, they achieve state-of-the-art results for open-pit mine change detection

(OMCD) using VHR imagery of mines in China. We note that although they achieve

superior results, the parameter size of their proposed model (54M parameters) makes its

inference slower than some smaller, less accurate methods (Li et al. 2023).
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2.5 Comparison

In this review, we have provided a broad overview of the relevant literature for monitoring

mine activity. In this field, there are a number of major approaches that reflect the specific

and relevant research questions in each case. To give a brief comparison, the two most

common reasons for identifying and monitoring surface mines are to 1) perform an envi-

ronmental impact assessment (D. Zhu et al. 2020; Nascimento et al. 2020) or 2) identify

mine locations for comparison against legal, known operations. With regard to source

data types, they can be broadly categorised into two types that are typically studied: HR

or VHR visual spectrum, and SAR/InSAR data.

Visual spectrum data has two advantages over SAR:

• It is easier to interpret and can be displayed in true/false colour.

• It may be less noisy than SAR data (SAR coherence suffers from high speckle

noise) (Jia and Z. Zhao 2021).

• There are VHR satellites that provide much higher spatial resolution than most avail-

able SAR satellites.

However, it also has the following disadvantages:

• It can be interrupted by cloud cover (L. Wang et al. 2021).

• It can only be captured during the day. Additionally, images may differ in their ap-

pearance depending on the position of the sun relative to the satellite.

• Seasonality may change the appearance of the surface features (M. Zhang et al.

2022).

• VHR data generally needs to be obtained from a private source and is not publicly

available.

Although InSAR coherence data is precise enough to detect subtle changes in surface

height (even as small as only a few centimetres), its sensitivity to factors such as vege-

tation and surface moisture poses a challenge. Moon and Lee delve into the details of

such challenges, describing how they overcame them in their detailed case study (Moon
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and Lee 2021, p. 22). One factor adding more complexity is the technical difficulty of data

pre-processing and integration with DEMs.

In the area of monitoring and assessing surface activity of open-pit mines, there are a

diverse set of techniques that have been engaged. Two papers that we have reviewed

(L. Wang et al. 2021; Moon and Lee 2021) compare bi-temporal InSAR images in order

to assess land change in terms of the novel NDAI. Using VHR visual spectrum data

paired with DL techniques, other studies have been successful at mapping binary surface

changes (Du et al. 2022; Chunsheng Wang et al. 2020; Li et al. 2023). None of the visual

spectrum studies make a quantitative measure of change besides C. Wang et al., who

use the DROTL index to measure the rate of change in the extent of the mine surface.

We find both of these proposed indices (NDAI and DROTL) to be useful descriptors of

activity and change in open-pit mine areas.

For general change detection in satellite imagery, there is a large and growing body of

recent research. While our review highlights five noteworthy sources, numerous other

methodologies and architectures have been explored in the review by Bai et al. The key

distinctions among these studies typically revolve around the type of data (i.e., whether

SAR or visual), the specific datasets employed for model training and evaluation, the

unique model architectures introduced, and whether the researchers have made their

code publicly available (Bai et al. 2022).

2.6 Summary

In our exploration of open-pit mine change monitoring literature, it is evident that there is

a substantial body of work is committed to identifying mining areas and devising strate-

gies for tracking surface changes. Yet, apart from the two references that employ the

NDAI for quantitative assessment of change, few studies aim to directly and objectively

measure mining activity levels based on observed changes. Moreover, much of the lit-

erature relies on the availability of VHR visual spectrum imagery. For the purposes of

this dissertation, obtaining access to sufficient quantities of high resolution visual data

over open-pit mines is not feasible. Studies emphasising algebraic strategies, such as

vegetative indices, provide valuable insights into proxy methods for tracking long-term
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changes in mining areas. Hu et al. stand out by illustrating how regression analysis can

be performed on these indices to depict vegetation changes (Hu et al. 2022). Neverthe-

less, this is approach is distinct from direct change monitoring such as the kind seen in

other DLCD references already discussed. It is also worth noting that pixel-based indices

are particularly vulnerable to seasonable surface variations, while DLCD methods have

demonstrated considerable robustness against such disturbances.

For researchers in this domain with limited resources, there is a notable example which

exclusively employs open-source and freely available tools (Balaniuk, Isupova, and

Reece 2020). Yet, the task of performing optical image change detection in open-pit

mines using freely available sources like Sentinel-2 is still largely unexplored. Moreover,

there is a lack of literature that aims to correlate the identified changes to meaningful

environmental and economic impact metrics.
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Research Methods

Our main research task for this project was to find a practical manner of assessing and

monitoring open-pit mine areas using the resources available to us. As a guide, our re-

search questions (given in Section 1.2.1) were intended to reflect what information (and

what experimental processes) were required for us to establish a system for accomplish-

ing that task. The experimental processes that we developed are given below, in detail.

3.1 Models

As discovered in our literature review, deep-learning change detection is a growing sub-

field focused on identifying spatio-temporal changes in EO observation data. Through the

utilisation of novel DL architectures, the accuracy of state-of-the-art binary DLCD models

has reached a level where they can be practically useful for tasks such as open-pit mine

change detection. We have proposed in this project to establish binary CD as a proxy

metric for surface activity in open-pit mine areas. In this section, the model selection

criteria are reviewed. The selected model architectures were trained and evaluated, and

that is discussed in further sections.

3.1.1 Model Selection Criteria from DLCD Literature

The following primary questions were considered when selecting models to train and

evaluate for open-pit mine CD:
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• Does the model appear to accomplish state-of-the-art (or comparable) performance

on established CD benchmarks?

• Would training (or at least fine-tuning) the model be feasible on freely available

hardware resources (such as the Google Colab environment)?

• Would training the data on a limited labelled dataset (less than 5k training samples)

be sufficient to achieve a desirable level of accuracy?

• Is there public source code available to assist in the implementation of the model in

our experiments?

Via the above questions/criteria, the following models were found to be promising candi-

dates for identifying and monitoring changes in open-pit mine areas.

3.1.2 TinyCD

TinyCD was selected on the basis of its state-of-the-art performance, its efficient training

size, and the availability of its source code in a public repository (Codegoni, Lombardi,

and Ferrari 2022). The original implementation is hosted on GitHub (AndreaCodegoni

2023). The TinyCD architecture features a Siamese U-Net structure with a novel Mix

and Attention Mask Block (MAMB) and a pixel-level output classifier (Figure 3.1). As

the backbone, TinyCD uses EfficientNet pre-trained on the ImageNet dataset (Codegoni,

Lombardi, and Ferrari 2022, pp. 4–5).

Figure 3.1: TinyCD network architecture. From (Codegoni, Lombardi, and Ferrari 2022,

p. 4). Reproduced under CC BY-NC-SA 4.0.
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3.1.3 LSNet

Although it is about 2× larger than TinyCD (in terms of the number of parameters), LSNet

is a lightweight DLCD architecture which boasts much higher computational efficiency

than many other state-of-the-art models (Liu, Huaixin Chen, and Z. Wang 2022). Addi-

tionally, its initial implementation has also been published in a public code repository. The

LSNet architecture features a light Siamese backbone with a novel differential feature

pyramid network (diffFPN) (Figure 3.2).

Figure 3.2: LSNet network architecture. From (Liu, Huaixin Chen, and Z. Wang 2022,

p. 2). Reproduced under CC BY-NC-SA 4.0.

3.1.4 DDPM-CD

DDPM-CD is quite different from the previous two models, as it relies on a large diffu-

sion model backbone which was pre-trained on Sentinel-2 imagery. Its implementation

and trained weights are available publicly online (C. Bandara 2023). The published paper

(W. G. C. Bandara, Nair, and Patel 2022) does not evaluate the model size or computa-

tional efficiency, so its hardware requirements for training were initially underestimated.

The DDPM-CD architecture makes novel use of the diffusion model backbone, which

are trained in an unsupervised manner. Following that, a lightweight Siamese difference

classifier is used to produce change predictions (Figure 3.3).
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Figure 3.3: DDPM-CD network architecture. From (W. G. C. Bandara, Nair, and Patel

2022, p. 6). Reproduced under CC BY 4.0.

3.2 Data

The selection of a robust training and validation set is potentially more important than the

model selected. As discussed in the literature review, there are a collection of benchmark

datasets for change detection that are freely available online such as LEVIR-CD (Hao

Chen and Z. Shi 2020), OSCD (Daudt et al. 2018), and OMCD (Li et al. 2023). With

regard to selecting which online dataset would be the best fit for training our models for

open-pit mine change detection, it is worth discussing which data was determined to be

the most useful for completing our goal of open-pit mine activity detection. We did not

only want to train a model against a benchmark; we also wanted to utilise the trained

model to monitor long-term changes in case study areas. In terms of turning the trained

models into a tool that is usable for monitoring long-term changes, it was determined that

the Sentinel-2 satellite data provided the best opportunity. The reasons are as follows:

1. Sentinel-2 data is freely available from the ESA through online platforms such as

Google Earth Engine, which is easily integrated into Google Colab.

2. Compared to other freely available satellite image sources such as Landsat,

Sentinel-2 has a higher spatial resolution (10 m vs 30 m).

3. The Sentinel-2 online archives contain data for at least as far back as 2018 for most

areas on Earth, and will continue to be added to for the foreseeable future (the

launch of Sentinel-2C is planned for 2024 (Gearing up for third Sentinel-2 satellite
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2023)).

While OSCD was derived from Sentinel-2 multi-spectral imagery, the other benchmark

datasets available are mostly from miscellaneous VHR satellite or aerial imagery sources.

During experimentation, training the models on the OSCD and OMCD datasets was ini-

tially attempted. It was expected that such training would improve change detection ability

on Sentinel-2 imagery over open-pit mine areas. However, the domain transfer from the

OSCD and OMCD source to the Sentinel-2 target areas appeared to be very poor (see

Appendix G for further discussion). We believe that there are likely to be two primary

reasons:

1. While OSCD is sourced from Sentinel-2 imagery, it does not feature any open-pit

mine areas.

2. OMCD features open-pit mine areas, but it uses VHR imagery sourced from the

Gaofen satellites and therefore has different optical characteristics and feature

scale.

Additionally, the definition of what counts as ‘change’ is different in each dataset and

benchmark. The reason for the difference in definition is primarily because each dataset

is established with a specific goal, namely: what changes should matter to our model? In

the context of OSCD, only ‘urban’ changes are labelled as part of the change class. Such

a goal is somewhat at odds with our own priority of identifying human activity within open-

pit mining areas, which may not necessarily appear as urban change. As mentioned in

(Ebel, Saha, and X. X. Zhu 2021, p. 5) who added Sentinel-1 data on top of the OSCD

dataset, there is a principal question about what should count as a change in the ground

truth.

3.2.1 Open-pit Mine Sentinel-2 Change Detection Dataset

For the aforementioned reasons, we found that it was necessary to establish a specific

definition of relevant change for open-pit mine change and activity detection. That def-

inition was then used to build a custom Open-pit Mine Sentinel-2 Change Detection

(OMS2CD) dataset. The definition of relevant change (or activity) includes all surface

areas that appear to include the following activities:
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• Excavation

• Waste tailings and overburden dumping

• Soil and rock build-up

• Re-filling of site areas for the purposes of reclamation

• Construction or deconstruction of structures or buildings in or near a known open-pit

mine

• Visible movement of vehicles in or around a known open-pit mine

• Signs of deforestation

• Construction, deconstruction, or modification of roadways in or near a known open-

pit mine

• Establishment of new waterways or the destruction of existing waterways

• Establishment or destruction of tailings ponds

The definition of change for the context of this project was established with consideration

for the purposes of activity monitoring for open-pit mines. As reviewed in our introduc-

tion, surface mining activities have significant environmental impacts. Such impacts are

evident in significant local changes to the surface environment. As found by (D. Zhu et al.

2020), even the surface temperature near surface mining sites can be significantly af-

fected by continued development. As such, any signs of significant human activity in and

around surface mines is considered by us to be worth monitoring.

It is worth mentioning that while the above items met the definition of change for open-pit

mines established for this context, it was still difficult to identify relevant changes in all

the Sentinel-2 images. Several factors, including the angle of the sun on the surface,

the presence of clouds, and seasonal changes (such as snow cover), make it difficult to

distinguish human activity from natural causes. The implication is that in the annotated

OMS2CD dataset that was used for training and validation of the selected models, there

are certain areas that were of low confidence to the human annotator. Even so, that

was deemed to be an acceptable risk. In the best case, if a model could do as well at
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annotation as the human (even making the same mistakes), the performance would still

be beyond acceptable.

3.3 Building the OMS2CD Dataset

The OMS2CD dataset which was built and manually annotated was constructed through

numerous steps of site selection and image processing to prepare it for use in training

our selected network architectures. Below, the process is described in detail.

3.3.1 Data Source Selection

To build the OMS2CD dataset, the first step was mining site selection. The open mining

database provided by (Jasansky et al. 2023) proved to be an invaluable resource. Using

the QGIS software (QGIS 2023), we filtered only known ‘active’ mining sites, and ex-

ported the data as a GeoJSON file. The GeoJSON data was then processed to create a

bounding box over the known geolocation area of the mining site. If a geolocation was not

present in the database, we used the GADM (Global Administrative Areas 2022) entry

to find the nearest administrative division (primarily in China), if possible. After manual

visual inspection of each site using geojson.io (Mapbox 2023), a total of 16 unique sites

across seven distinct geographical areas were selected.

3.3.2 Data Filtering and Acquisition

After the mining site bounding boxes were established, the Google Earth Engine (GEE)

through Google Colab was used to download and preprocess the Sentinel-2 Level-2A

surface reflectance imagery data for the areas selected. The date range for download for

each area was from 2016-01-01 to 2020-12-31, with a filter for images with 20% clouds

or less. For each month of data in each mining site area, the least cloudy day was se-

lected for download. Sentinel-2 Level-2A surface reflectance is already atmospherically

corrected and images for a given region are automatically registered together. While the

Level-1C data from GEE is available from earlier time periods (2015-06-23 as compared

to 2017-03-28 for Level-2A) it was simpler to download the Level-2A data without devel-

oping an extensive image processing pipeline.
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3.3.3 Processing and Annotation Criteria

From the full 13-band images downloaded using Google Earth Engine, only the 3 RGB

bands (B4, B3, and B2 for Sentinel-2 data) were exported and scaled down from the

standard Sentinel-2 range of 0-10000, to 0-255. Finally, manual visual inspection was

used to remove images that were incomplete or had too much cloud cover. This left a

total of 255 RGB GeoTIFF images over the aforementioned mining sites. These were

then filtered further and organised into 238 bi-temporal image pairs prepared for mask

annotation.

Figure 3.4: From left to right: an RGB Sentinel-2 image tile, the corresponding change

mask label, and the area mask polygon.

To assist in annotation and model training, mining site area mask polygons were created

and exported using QGIS. These were intended to separate approximate mine areas from

the surrounding non-mine areas in each of the 16 sites. See Figure 3.4 for an example

of one of the dataset images and its corresponding masks. Note that the RGB image

tile is a composite raster image1 created by combining the Sentinel-2 B2-B4 bands as

mentioned earlier.

Following the established ‘change’ criteria described in Section 3.2.1, 70 of the previously

selected 238 bi-temporal image pairs were manually annotated using GIMP imaging edit-

ing software (The GIMP Development Team 2023). There was unfortunately not sufficient

time during the project to annotate all 238 bi-temporal image pairs. However, 70 image

1A raster is a matrix of data commonly used in EO. Each element of the matrix (which may represent
multiple data bands) corresponds to a specific spatial position, and the data for that position. The data
represented could be surface reflectivity, elevation, radar coherence, etc.
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pairs is a collection still larger than the aforementioned OSCD benchmark dataset which,

between train and test, only contains 50 annotated image pairs.

After manual annotation was completed, files without a completed change mask were

removed from the dataset. The remainder were then split into separate train, validation,

and test locations. Using different locations for each split of the dataset was intended

to reduce spatio-temporal dependencies arising that would have incorrectly given the

models a high validation and/or test performance.

Additionally, using an image patch size of 256×256 pixels (the input size used in most

DLCD architectures) with a stride of 128 pixels, the locations for each split were se-

lected to approximate a split of 70%, 20%, and 10% for training, validation, and testing

respectively. Effort was also made to guarantee that the validation and testing sets would

represent as unique geographical areas as possible. As such, it was considered that the

models were generalising well only if both validation and test performance appeared to

be increasing. In practice, the trained models performed much better on the validation

split, but this will be discussed more in our analysis.

3.3.4 Data Preparation and Augmentation

Due to the limited size of the proposed OMS2CD dataset, strategies needed to be em-

ployed to increase dataset diversity, enhance model generalisation, and reduce training

set over-fitting. Following other works in this area, (Codegoni, Lombardi, and Ferrari

2022; W. G. C. Bandara and Patel 2022; Li et al. 2023) data augmentation methods were

employed. The data augmentation included both random geometric (flip, rotation, scale)

and non-geometric (random Gaussian noise) operations:

1. Random horizontal and vertical flip.

2. Random Gaussian noise: N (0, 0.1).

3. Random affine transforms (rotation up to 30 degrees, translation up to 10% on each

axis, scaling between 80% and 120%).

Horizontal and vertical flipping and rotation encourage the model to generalise in a way

that is not dependent on the specific direction of the visual features. Similarly, scaling
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encourages learning scale-invariant features. Gaussian noise is added to increase visual

diversity and enhance the model’s robustness against speckle noise that may be present

in the input images.

In addition to the above augmentations, distribution standardisation was applied to the

images to bring the input images into a target distribution of N (0, 1). The mean and stan-

dard deviation of the dataset for standardisation were calculated using only the training

data, separately for all image channels. All of the above augmentations and standardisa-

tion were performed using the Kornia library (Riba et al. 2019).

As a final method of increasing the total size of the training dataset, input images of size

256×256 were pulled from the larger source images using a sliding window with a stride

100 pixels. This means that each training image (or patch) overlapped with a selection of

other nearby patches, but it increased the model’s exposure to each area. Additionally, an

advantage of providing overlapping patches means that change areas near the edge of

one patch (not showing the entire change area) may be presented in the centre of another

patch. Combined with the aforementioned augmentation transforms, such a change area

may be presented to the model differently than in nearby patches.

3.3.5 Data Representation

Split Size Percentage (%)

Train 2130 72.6

Val 463 15.8

Test 342 11.7

Total 2935 100.00

Table 3.1: Distribution of dataset splits.

The final, labelled, and pre-processed OMS2CD dataset contains 102 Sentinel-2 image

tiles of 15 different surface mining sites. The image tiles selected or multi-seasonal and

cover different relative sunlight angles. In addition, the dataset has 17 area masks (as

defined earlier) and 70 hand-annotated mask labels which cover the 70 bi-temporal image

pairs. Using a patch size of 256×256, a stride of 100, and the aforementioned splits,

Table 3.1 gives the dataset sizes which we used for training.

All image files in the dataset are presented as .tif files, which are in the GeoTIFF image
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format. The binary area and change label masks they are single-channel (or band) with a

value range of [0− 255] (0 for no change, 255 for change). All the other GeoTIFF files are

RGB (three-channel) with a value range of [0 − 255]. The naming scheme of the mining

site images is as follows:

s2_<facility_name>_<coordinates>_<YYYY-MM-DD>.tif

To organise the dataset into training, validating, and testing splits, there are three .csv

files which are the locations for each split. A ‘mapping.csv’ file is also contained within,

which describes which images make up each bi-temporal image pair. We have provided

in the project source code a Python class ‘OMS2CD’ which was used to work with the

dataset and prepare it for use with DLCD models. More details are available in Appendix

H and Appendix I.

3.4 Model Training

For training the selected models that were described in Section 3.1.1, the primary limita-

tion was hardware resource availability. Hardware limitations, in turn, limited the amount

of time with which could be focused on performance tuning with hyperparameter adjust-

ments. The training setup was a bit different for each model, generally following the

default setup used by the model’s authors as made available in their source repositories.

In general (for all models trained), training was approached with the following guidelines:

• Batch size was maximised based on the amount of GPU memory available for the

model during training.

• An ‘early stopping’ algorithm based on validation loss was used to prevent over-

fitting and to make best use of our available time limitations.

• 16-bit precision was used, where possible, to make training more efficient.

• The original author’s model source code was modified as little as possible to achieve

training using the PyTorch Lightning library (Falcon and The PyTorch Lightning team

2019).

• Training data were shuffled (randomised in order).
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• The same augmentation steps and probabilities were used.

• The pseudorandom systems were seeded with the same values for each training

run of each model.

• All training was limited to 50 epochs (though due to early stopping, it rarely reached

that point).

3.4.1 Transfer Learning

In the domain of surface mine identification and monitoring, (Chunsheng Wang et al.

2020) serves as a demonstrable example in their approach using transfer learning. Defin-

ing transfer learning as “transfer and reuse of knowledge” between a ‘source’ and ‘target’

domain, they demonstrate how a model that was pre-trained on the COCO image dataset

(Lin et al. 2015) can be adapted to surface mine detection. Such a method of domain

transfer provides a potential type of model training that can reduce the amount of training

data which is required for convergence. The term fine-tuning then refers to the process

of training just a portion of a model on the new domain. The model weights which are

not being trained are said to be ‘frozen’ because they are not updated through gradient

backpropagation. Because less of the model weights are being updated, less hardware

resources and time are required for training, and the model’s performance relies more on

the pre-training that it has experienced.

To take advantage of the potential benefits of transfer learning, each model was fine-

tuned from the weights provided in the original source. The details of this fine-tuning are

discussed below in Section 3.4.3 and in Section 4.1.1.

3.4.2 Focusing on Areas of Interest (AOI)

Open-pit mine CD is unique from change detection in other contexts because, as was

established in Section 3.2.1, there is a broad category of change that we desire to identify.

Unlike other change detection tasks which may be only interested in changes to buildings

or roads, the relevant changes present in open-pit mine areas that reflect activity can

be substantially more broad. Additionally, there are spatio-temporal changes present in

the OMS2CD dataset tiles that do not appear to be related to mining activity. In those
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cases, would it be desirable for the model to identify them as change? Would such an

identification be considered to be correct or incorrect?

In review of the relevant literature, we did not find such a discussion about the identifica-

tion of relevant change. Even so, it was experimentally found that these questions pose

challenges to model performance in real-world tasks, and this is discussed this further

in the analysis in Section 4.4. To evaluate the impact of training and validating the se-

lected models against potentially irrelevant changes that can appear very visually similar

to relevant changes, area masks were added to the OMS2CD dataset to mark the mine

AOI. Each model was then trained using the full Sentinel-2 image tiles or just the tiles that

overlap with the AOI mask polygon, and the performance was compared.

3.4.3 Training and Validation Experimental Setup

As briefly mentioned in Section 3.4, there was insufficient time available during the project

to tune the hyperparameters of the models. As such, the hyperparameters values that

were used can be given here as explicit, hardcoded values. Unless otherwise stated, the

values selected were those left as the recommended or default values by the model’s

original authors. For LSNet and DDPM-CD, these values were derived from the training

configuration files created by their authors. In the case of TinyCD, the value was derived

from the training source code.

3.4.3.1 TinyCD

For training TinyCD, AdamW optimisation (Loshchilov and Hutter 2019) was used with a

learning rate of 0.003, weight decay of 0.009, and not using the AMSGrad variant. Unlike

the source paper, no cosine annealing algorithm was implemented on the learning rate,

as it was experimentally found that convergence was more stable without it. The target

loss function was binary cross-entropy loss, and the batch size used was 16. The total

trainable parameters in the TinyCD model numbered 285,000.

For fine-tuning the model, numerous approaches to optimise the models’ validation and

testing performance on our dataset were attempted. Such approaches included:

• Training the full model from randomised weights.
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• Loading the pre-trained backbone model and freezing its weights (just training the

TinyCD head).

• Loading the full pre-trained model from the TinyCD repository and training it without

freezing its weights.

• Loading the full pre-trained model from the TinyCD repository and only training the

final linear classifier layers.

Additionally, the models were trained with and without the data augmentation described

in Section 3.3.4. However, training without data augmentation was discovered early-on

to continuously provided poorer validation results. Therefore, all of our recorded experi-

ments used augmentation.

3.4.3.2 LSNet

The original LSNet work provided a few different model options, which offer a trade-off

between model size and computational complexity. For that reason, the DiffFPN version

of the model was selected for training. Within the context of training and evaluation in this

project, ‘LSNet’ can be considered synonymous with LSNet-DiffFPN.

LSNet was trained using the AdamW optimiser, with an initial learning rate of 0.001, weight

decay of 0.01, and no AMSGrad. Mirroring the LSNet paper, the StepLR learning rate

scheduling algorithm with a step-size of 8, and a gamma of 0.5 was used. The target

loss used by the authors of LSNet was not reviewed in their paper. However, in their

source code the default loss function was a hybrid loss which was the sum of the binary

cross-entropy and dice losses. Therefore, that is what we used. The batch size used was

6. The total trainable parameters in the LSNet model numbered 1.2 million.

Similarly to our TinyCD training process, LSNet was also trained using different levels of

fine-tuning. The results from each type of fine-tuning are discussed in our analysis.

3.4.3.3 DDPM-CD

The DDPM-CD architecture consists of two components: the DDPM diffusion backbone

(through which the pre- and post-images are run) (Saharia et al. 2021), and a Siamese
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difference network which decodes the diffusion features into a final change map out-

put. The authors of DDPM-CD trained the diffusion model backbone on over 1 million

Sentinel-2 images, and provided the trained weights publicly. Because of limited hard-

ware resource availability (and our focus on freely accessible resources), in all training

instances the parameters of the diffusion model backbone were frozen to focus only on

training the difference network.

For DDPM-CD, the Adam optimiser (Kingma and Ba 2017) was used with an initial learn-

ing rate of 0.0001 and a linear learning rate decay with a step-size of 3 and a gamma of

0.1. The loss function used was cross-entropy loss. The batch size used was 3. The total

parameters in the DDPM-CD model numbered 435 million, but the highest number that

we regarded as trainable was 44 million (achieved when treating the diffusion backbone

as frozen).

Due to the time requirements of training the DDPM-CD difference head, we were not able

to extensively experiment with fine-tuning DDPM-CD.

3.4.4 Comparison Metrics

In DLCD model architecture literature such as LSNet, TinyCD, and DDPM-CD, the most

commonly used metrics for performance comparison are F1, IoU, accuracy (also known

as overall accuracy (OA)), precision, and recall. While during training and validation the

performance was primarily reported as the model’s corresponding loss function value,

model-to-model comparisons were performed using the aforementioned metrics. Here is

a quick definition of each of them, as given by (Liu, Huaixin Chen, and Z. Wang 2022):
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Pr :=
TP

TP + FP
,

Rc :=
TP

TP + FN
,

F1 :=
2

Pr−1 +Rc−1
,

IoU :=
TP

FN + FP + TP
,

OA :=
TP + TN

FN + FP + TP + TN
,

Note that the convention used is TP = True Positive (a positive ground-truth value

identified correctly), FP = False Positive (a negative ground-truth value identified in-

correctly), TN = True Negative (a negative ground-truth value identified correctly), and

FN = False Negative (a positive ground-truth value identified incorrectly). For our ex-

perimental analysis, each metric has been calculated at the pixel level by comparing the

ground-truth and predicted matrices element-wise. Below, we formally define pixel-wise

calculation of the above metric components:

Given a ground-truth matrix G and the prediction matrix P of dimensions m×n, the values

of TP, FP, TN, and FN can be calculated as:

TP =
m∑

i=1

n∑

j=1

[Gij = 1 ∧ Pij = 1]

FP =

m∑

i=1

n∑

j=1

[Gij = 0 ∧ Pij = 1]

TN =

m∑

i=1

n∑

j=1

[Gij = 0 ∧ Pij = 0]

FN =

m∑

i=1

n∑

j=1

[Gij = 1 ∧ Pij = 0]

Where Gij and Pij represent the elements at the ith row and jth column of the ground-
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truth and prediction matrices, respectively. [·] is the Iverson bracket that returns 1 if the

condition inside the parentheses is true and 0 otherwise.

Considering an example where element (0, 0) of both matrices were 1, then the pixel

represented by element (0, 0) would be considered a TP prediction. In a visual image

representation, we could then define TP and TN as follows:

TP =
m∑

i=1

n∑

j=1

[Gij = white ∧ Pij = white]

TN =

m∑

i=1

n∑

j=1

[Gij = black ∧ Pij = black]

where matching white pixel predictions are considered TP, and matching black pixel pre-

dictions are considered TN. For a visual example, see Figure 3.5 where areas that are

white in both would be TP, and black in both would be TN.

Figure 3.5: A pair of labelled change prediction mask images. Left: ground-truth label;

right: change prediction by LSNet.

3.4.5 Training Hardware Resources

All training of the LSNet and TinyCD models was performed using the Google Colabo-

ratory free-tier T4 GPU instances with 16 GB VRAM. Such instances are free to use by

anyone with a G-Suite account (Google Colaboratory 2023). We initially attempted using
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the same hardware to train DDPM-CD, but the training time was too slow, and the VM in-

stance would time out before a sufficient number of training epochs had been completed.

As such, we utilised the ‘Pro’ tier plan from Paperspace Gradient, (Paperspace - Gradient

Notebooks 2023) ($8 USD per month) which gave us access to a Jupyter Notebooks VM

instance equipped with an NVIDIA Quadro RTX5000 (or RTX A4000, when available)

with 16 GB VRAM. The maximum timeout limit available for the Gradient VM instances

is 6 hours, which is much more lenient than those available on Google Colab (often only

1–2 hours, in our experience). While such instances on Gradient are not free, they are

still very affordable for projects with a limited budget.

3.5 Normalised Difference Temporal Change Index (NDTCI)

As summarised in Section 1.2, one of the primary objectives for this project was to use

DLCD models to predict changes in bi-temporal image pairs of open-pit mine areas. How-

ever, it was also found that a succinct way of measuring and expressing the specific levels

of activity was needed. As discussed in the literature review, only two previous works that

were focused on mapping the spatio-temporal changes in open-pit mines as a measure

of mine site activity were identified. The proposed measure, Normalised Difference Activ-

ity Index (NDAI) was proposed by (Moon and Lee 2021) and paired with Digital Elevation

Models (DEM’s) to map changes. L. Wang et al. developed the idea further without

requiring DEM data (L. Wang et al. 2021). Following on their work, we wanted to take

advantage of a similar measure of activity represented as a normalised index measure.

However, the NDAI (see Equation 3.1) was intended to be used with InSAR data and

requires InSAR coherence measurements (ρ) as inputs.

NDAI =
ρstable

activity − ρ
target
activity

ρstable
activity + ρ

target
activity

(3.1)

Although we did not use InSAR coherence images, the trained DLCD models do produce

binary change prediction images, which may be treated as a proxy for activity measures.

As such, we propose to define our index of activity using change detection as the Nor-

malised Difference Temporal Change Index (NDTCI) in Equation 3.2. δtarget is the pixel-
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level change predictions for the target pixel. δstable is the mean of the predicted changes

for ‘stable’ regions in the given change image. ε is simply a small regularising constant

value that prevents divide-by-zero. In practice, it was found that δstable could be calcu-

lated as the mean value of the lower quartile of the change image distribution. The lower

quartile of change predictions should be near zero, which is comparable to how L. Wang

et al. selected ρstable to have a coherence > 0.9.

NDTCI =
δtarget − δstable

δtarget + δstable + ε
(3.2)

The NDTCI has a theoretical range of [−1, 1], with values closer to one signifying greater

activity and values closer to -1 signifying lesser activity. Generally, since δstable ≈ 0, the

typical range is [0, 1]. The NDTCI is intended to be calculated for an entire image matrix.

Such an NDTCI matrix N could be defined as N = [NDTCIij] ∈ [−1, 1]H×W , where

NDTCIij represents the calculated NDTCI value at the i-th row and j-th column of the

matrix.

When the NDTCI is calculated for a set of change prediction images, then the mean of

the NDTCI values yields an output which shows which areas of the mining site are more

or less active. Effectively, it is an activity map. A formal definition and examples of such

activity maps have been provided in Section 4.2.3.

3.6 Positive-class Prediction Thresholds

In the analysis (Chapter 4), performance comparisons and other analytical comparisons

are made between the models. When performing comparisons using singular metrics

like F1, precision, and recall, a choice needed to be made for the positive-class pre-

diction threshold which would maximise the metric scores across all the models. The

positive-class prediction threshold is simply the threshold where each pixel in the pre-

dicted change mask is determined to be either positive (contains change) or negative

(no change). The value compared against the threshold is the predicted probability/con-

fidence of that pixel. In the reviewed DLCD literature, the threshold is generally set at 0.5,

but the optimal value may be anywhere within the range of [0, 1] depending on the model.
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To determine the optimal value which would yield the highest F1-score, for each model,

we calculated and visualised the Precision-recall curve on the OMS2CD dataset. The

results of those calculations are reviewed in Section 4.1. We note that while the thresh-

old value which would optimise F1 was selected, there may be valid reasons to select a

different threshold to change the balance between precision and recall.
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Analysis

4.1 Model Performance Comparison on Open-pit Mine

Change Detection

As described in detail in Section 3.4, each of the selected model architectures were

trained on the OMS2CD dataset described in section 3.2.1. In this section, the per-

formance of each model is reviewed and there is a discussion on the specific training

conditions and their observed effects on model performance. The performance metrics

identified and defined in 3.4.4 were used for direct comparison of the models. The F1-

score was the single metric primarily used because it is a balance between precision

and recall. A metric such as accuracy is not informative in situations where there is an

extreme class imbalance.

In Table 4.1 we provide a comparison of performance metrics for our models. For the

comparison results, the best-performing weights (using F1-score) of each model were

selected. A positive-class prediction threshold of 0.3 was used, and was selected by

using the precision-recall curves in Figure 4.1, 4.2, and 4.3. It can be observed that

a threshold value of 0.3 generally yields a good balance between precision and recall.

It is noteworthy that while TinyCD is the smallest model, it achieved the best F1-score

by a significant margin on both splits. Additionally, it is easy to see that the dataset

performance for each split was vastly different. For example, LSNet had an F1-score
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LSNet TinyCD DDPM-CD

Metric Val Test Val Test Val Test

OA 0.991512 0.966767 0.990888 0.969701 0.986821 0.954244

F1 0.638726 0.254062 0.671778 0.336884 0.606581 0.258069

Recall 0.551435 0.315948 0.685350 0.429665 0.746673 0.444258

Precision 0.758850 0.212449 0.658733 0.277057 0.510753 0.181853

AP 0.733086 0.176493 0.716710 0.264977 0.655944 0.202095

IoU 0.682484 0.114234 0.453052 0.143711 0.418034 0.133165

Table 4.1: Model performance comparison for OMS2CD train and validation splits. Best

performance in each metric for validation is highlighted in orange and for testing in blue.

Figure 4.1: Precision-recall curve from TinyCD on the validation (left) and test (right) sets

of the OMS2CD dataset.

Figure 4.2: Precision-recall curve from LSNet on the validation (left) and test (right) sets

of the OMS2CD dataset.
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Figure 4.3: Precision-recall curve from DDPM-CD on the validation (left) and test (right)

sets of the OMS2CD dataset.

of 0.64 on validation, but only 0.25 on test; but such a difference is reflected in all three

models.

Why was there such a significant difference between splits? There may be three primary

causes:

• Since the dataset (and therefore the splits) are small, each split has a significantly

different data distribution.

• Visual inspection of the test split location reveals that it is demonstrably more difficult

to identify mining areas and their changes.

• The test data split is considerably smaller than the validation split.

Even so, both evaluation (validation and test) splits are spatially separate from the training

areas and from each other. Therefore, both evaluation splits should be used to make a

full assessment of model performance. With that said, although TinyCD appears to be

significantly better at properly identifying change, it is possible that TinyCD is simply

better in the specific distribution represented by the evaluation sets.

In review, it was surprising that the performance of DDPM-CD on the OMS2CD dataset

was comparable to that achieved by the other two models. Because the computational

requirements of DDPM-CD are considerably larger than the other two models, it does

not appear to be an efficient model for the proposed task. However, it is possible that

with a larger available training dataset, DDPM-CD may be able to generalise better and

outperform the others.
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4.1.1 Impact of Fine-tuning

As we defined in Section 3.4.1, fine-tuning is defined as when some part of a pre-trained

model is ‘frozen’ so that only a small subset of the total model weights are updated via

gradient backpropagation. Each of the selected models were fine-tuned from the pre-

trained weights provided by the original authors. TinyCD and DDPM-CD were pre-trained

on the LEVIR-CD dataset from (Hao Chen and Z. Shi 2020), while LSNet was pre-trained

on CDD from (C. Zhang et al. 2020).

4.1.1.1 TinyCD

Figure 4.4: Loss vs training iterations for training TinyCD under different fine-tuning sce-

narios.

On TinyCD, it was discovered that the best F1-score was achieved when the model was

fully unfrozen (we were updating all the model’s weights). In Figure 4.4 we provide a train-

ing comparison using different modes of fine-tuning. The blue line is from fine-tuning only

the ‘classify’ layers of the model (675 parameters), pink is from fine-tuning with the ‘back-

bone’ frozen (15.8k parameters), yellow is from training the full network with randomly

initialised weights (285k parameters), and purple is from training the full network when

initialised with pre-trained weights. Finetuning only 15.8k parameters nearly achieved

the same loss as training the full network, which demonstrates how transfer learning can

achieve more efficient training performance.
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4.1.1.2 LSNet

The LSNet model architecture achieved the highest F1-score using the same strategy

as TinyCD; training the full network (no layers frozen), but starting from the pre-trained

weights provided by the authors.

Figure 4.5: Loss vs training iterations for training LSNet. The best validation loss was

achieved when training the full network from random weight initialisation (yellow) and

when training the full network from pre-trained weights (green).

In Figure 4.5 one can see that the validation performance of LSNet is greatly affected by

the number of frozen parameters, and whether the network is initialised with pre-trained

weights. The gray line is from fine-tuning only the ‘head’ of the network unfrozen (3.6k pa-

rameters), purple is from fine-tuning with only the ‘backbone’ frozen (274k parameters),

yellow is from training the full network with randomly initialised weights (1.2M parame-

ters), and green is from training the full network initialised with pre-trained weights. It

is noteworthy that a similar level of performance is achieved regardless of whether the

backbone is frozen, as was seen with TinyCD. Additionally, training the full network from

the pre-trained weights seems to achieve better performance in fewer steps than training

from randomly initialised weights.

4.1.1.3 DDPM-CD

Due to the training time required for DDPM-CD, there were insufficient resources to per-

form a full fine-tuning comparison as was completed for LSNet and TinyCD. However, it
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was the last model that was trained. To adapt what was learned from the previous mod-

els, the Siamese diffusion model training was started with pre-trained weights. By using

the pre-trained weights, the goal was to take advantage of the faster convergence that

was seen when using the same strategy on LSNet and TinyCD.

4.2 Spatial Change Detection as a Form of Temporal Change

Analysis

Following model training and evaluation, the model weights which appeared to optimise

the F1-score across the validation and test sets were selected. See Table 4.1 for a cross-

metric comparison of the selected models’ performances.

The following sections detail the experiments which answer the final research question

proposed in the introduction: “Can DLCD be used to monitor and detect the activity level

of open-pit mines over time?” In summary: yes. We have experimented with three meth-

ods of utilising our trained models to map temporal changes in surface mining areas, with

a ground truth comparison. The first method yields a chart of detected surface changes

for each bi-temporal image pair and acts as a manner of measuring the amount of ‘ac-

tivity’ that occurred in that time delta in terms of the actual surface area change. The

second method visually maps the spatial changes over the mining site, with visible areas

of change for further investigation. The third method takes inspiration from (L. Wang et al.

2021) and maps a normalized difference index NDTCI as we described in Section 3.5.

4.2.1 Method 1: Plotting Change Area Predictions as an Activity Metric

By taking each bi-temporal image pair and making a change prediction with the models,

a timeline of change/activity was created (Figure 4.6). Additionally, the human-labelled

ground-truth masks were processed to make a ground-truth comparison timeline to as-

sess the accuracy of the proposed method. The y-axis metric is in square area (m2),

because each pixel of the Sentinel-2 tiles in the selected bands is 10m×10m, or 100

m2. The calculated area of change is simply the summed area of the pixels which were

predicted to contain change. While creating a plot like that in Figure 4.6 does not pro-
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Figure 4.6: Left: A plot of surface area changed (in m2) over time. Each bar represents

the amount of change that was predicted to have occurred over that interval of time. The

plot covers the Werris Creek area from our OMS2CD dataset. The red median points are

the median change value of the three models for each time interval, while the area bars

are the standard deviation of the predictions at that interval.

vide insight into the specific regions of change in the target area, it does create an easy

visual estimate of the level of activity over time. See the appendix for plots covering the

predicted change in the other evaluation areas.

The change predictions for all areas of the evaluation data were calculated using the

three trained models and ground-truth, and those predictions were used to calculate the

Pearson correlation coefficient between each pair. In Figure 4.7 the heatmap of corre-

lation between each model pair is shown. It is significant that the highest single-model

correlation with the ground-truth is LSNet (with a correlation of 0.73) but that the median

value of the model predictions has a correlation of 0.84. It seems to demonstrate that

together the three models are able to provide a more informed prediction than when they

are separate.

Such a statistically significant correlation result between our model predictions and the

ground-truth is a positive sign that a plausible form of activity detection has been pro-

posed.
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Figure 4.7: A heatmap of the Pearson correlation between the model change area pre-

dictions.

4.2.2 Method 2: Visually Mapping Changes over Time

By taking the predicted change images from a model and stacking them (therefore making

the later images appear on top of the earlier ones) mine site changes as they occurred

over time can be visualised (Figure 4.8). Such a visualisation demonstrates how the

proposed methodology provides a valuable tool in activity detection. A map of specific

spatio-temporal changes provides easy targets for follow-up investigation in the monitor-

ing of mining sites.

4.2.3 Method 3: NDTCI as a Normalised Activity Measure for Spatio-

temporal Changes

The NDTCI as proposed in Section 3.5 is intended to act as a single, normalised measure

of activity using bi-temporal, optical image pairs. While it can be used to measure the

spatio-temporal changes between two images at a location, it can also be used to create

a visual map of regions of high and low activity (Figure 4.9). We have derived this method

of taking the average over the NDTCI predictions (which we call µNDTCI) from the method
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Figure 4.8: A map of changes in the Guizhou mine site area from OMS2CD. Left: ground-

truth change labels; right: changes as predicted by DDPM-CD. Each colour band repre-

sents a bi-temporal pair, with the dates shown in the legend. Horizontal and vertical axes

are measured in pixels.

Figure 4.9: A map of µNDTCI in the Gunnedah Vickery mine site area from OMS2CD.

Left: ground-truth change labels; right: changes as predicted by TinyCD. Horizontal and

vertical axes are measured in pixels. The colour represents the NDTCI value.
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mentioned with NDAI in (L. Wang et al. 2021, p. 9), but we provide a formal definition

in Equation 4.1. Therefore, each pixel in this new activity matrix µNDTCI represents the

average level of activity in that location over the provided set of T sequential NDTCI

matrices from time t = tstart until time t = tend. Ideally, the set of T NDTCI matrices

should be uniformly spaced, but in practice that could be difficult to achieve due to missing

observations. A weighted form of the metric which is balanced by the length of each

interval could be useful, but we do not define one here.

µNDTCI =
1

T

tend∑

t=tstart

NDTCIt (4.1)

4.3 Effects of Cloud Cover and Seasonal Changes

Figure 4.10: Prediction example. From left to right: Sentinel-2 ‘pre’ image tile; Sentinel-2

‘post’ image tile; LSNet model change predictions.

As detailed in Section 2.5, multispectral optical imagery has a number of disadvantages

when compared to SAR. Such disadvantages include being inoperable at night, being

occluded by cloud cover, and sensitivity to the angle of the sun on the terrain. In our

experimentation, we have found that the greatest natural obstacle to accurate change

detection is cloud cover. To build the OMS2CD dataset, images with the least cloud

cover were selected to be part of the dataset. While such an approach is sensible (and

typical), it may have helped to make the DLCD models more robust to cloud occlusion if

more cloud cover areas had been included in the training data. While the models appear

to be fairly robust to small amounts of cloud occlusion (Figure 4.10), that they are still

somewhat susceptible to counting cloud movements as relevant change if cloudy images
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are not filtered from the input data (Figure 4.11). But such effects are not consistent

between models, nor across spatial areas.

Figure 4.11: Cloud-occluded prediction example. From left to right: Sentinel-2 ‘pre’ image

tile; Sentinel-2 ‘post’ image tile; LSNet model change predictions.

Besides cloud occlusion, one of the other major challenges for CD is seasonal changes to

the target terrain. One of the most distinct seasonal changes in temporal regions is snow

cover, but they may also include agricultural development (planting, harvesting, etc.), tree

canopy changes (in deciduous forest areas), and changes to water sources (water level

rising or falling), among others. Each of the listed categories of seasonal change pose a

unique challenge, as they are represented as entirely unique visual artefacts. Agricultural

development, for example, may be easy to confuse with the clearing of vegetation which

occurs before excavation. In the Sentinel-2 images at 10 metre resolution, both types of

human activity appear quite similar.

In the OMS2CD training dataset, there are a number of images which include snow cover.

Following the established change criteria, areas with snow cover were not labelled as

‘changed’ unless there appeared to be clear human activity (such as the clearing of snow

for roadways). As such, the trained models do not seem sensitive to mistakenly labelling

snow cover or melt as changed (Figure 4.12). With that said, we have found that all

three models tend to make false-positive predictions on agricultural developments which

appear similar to mining surface changes. Such a mistake seems sensible, because at 10

m resolution it can be very difficult to tell the difference even for a human annotator. Figure

4.13 is an example of difficult seasonal changes. Due to the likelihood of false-positive

52



CHAPTER 4. ANALYSIS

Figure 4.12: Snow-cover seasonal prediction. From left to right: Sentinel-2 ‘pre’ image

tile; Sentinel-2 ‘post’ image tile; TinyCD model change predictions.

Figure 4.13: Seasonal prediction with agricultural changes. From left to right: Sentinel-2

‘pre’ image tile; Sentinel-2 ‘post’ image tile; DDPM-CD model change predictions. In the

given mask, white represents TP predictions, yellow represents FP predictions, and blue

represents FN predictions.

predictions in areas outside the target mine area, we demonstrate how separating the AOI

using a polygon mask can be helpful in obtaining a more accurate change prediction.

4.4 Impact of Predicting within a Defined AOI

As reviewed in the methodology in Section 3.4.2, very little discussion was identified in

the relevant literature regarding purposefully bounding the relevant change areas (AOI).

One reason for that may be that, among CD tasks, open-pit mines represent a unique

challenge. Unlike in urban development, surface mining may blend in with the surrounding

natural terrain or agricultural activity. In regions where the mine is near to human activities

such as farming and deforestation, true relevant change can be difficult to identify. In such

cases, we recommend restricting the prediction area to be as close to the target mine as
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Figure 4.14: A comparison of µNDTCI maps for the same area based on model predictions.

Left is the µNDTCI plot without utilising an area/AOI mask, while right is with the mask.

possible. To achieve that, AOI ‘area mask’ polygons as defined in Section 3.3.3 were

created.

Let us define the predicted matrix as P = [pij ] ∈ [0, 1]H×W , where pij represents the

prediction value at the i-th row and j-th column of the matrix. Then the AOI mask as

described can be defined as M = [mij ] ∈ 0, 1H×W , where mij represents whether the

pixel at the i-th row and j-th column is inside the area of interest. The final change

predictions within the area of interest can be computed as the element-wise multiplication

of the two matrices.

In our experiments, after a model made its predictions over the entire Sentinel-2 tile, the

change prediction image was simply multiplied element-wise by the area mask (Equation

4.2) to get rid of predictions outside the AOI. The resulting matrix C = [cij ] represents the

prediction after applying the AOI mask. A value of 1 in C means that both the prediction

and the mask were 1 (i.e., change is predicted within the AOI), and a value of 0 means

either no change was predicted or the location is outside the AOI.

C = P ◦M (4.2)

While creating an AOI mask for each target region requires some manual work, it is a

54



CHAPTER 4. ANALYSIS

rather simple process that greatly reduces the model false-positives (Figure 4.14). In a

real-world production pipeline, an AOI area mask could be defined for each target region

as a simple way of improving change prediction accuracy by reducing false-positives. On

the evaluation data, using the area masks reduced the median NDTCI timeline prediction

RMSE by over 40% when using a positive-class prediction threshold of 0.4 (Figure 4.15).

Figure 4.15: A comparison of NDTCI timeline prediction values by model with and without

an area mask. Prediction threshold 0.4.

4.5 Selecting a Prediction Threshold for Inference

In Section 4.1 the PR curve from each model was used to determine an optimal prediction

threshold for the metric comparison. For the model inference experiments in Section 4.2

through Section 4.4 a threshold of 0.4 was used. While it was found that any threshold

value in the range of (0.3, 0.7) tended to give acceptable results, it is worth discussing

how the decision of the prediction threshold measurably affects the model inference per-

formance. For example, compare Figure 4.16 to the previous Figure 4.15. The ‘with

mask’ RMSE was significantly higher for all models when the threshold was set to 0.6.
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Figure 4.16: A comparison of NDTCI timeline prediction values by model with and without

an area mask. Prediction threshold 0.6.

Interestingly, the ‘with mask’ and ‘no mask’ RMSE were not very different when using

a threshold of 0.6, unlike when the threshold of 0.4 was used. It may be that when the

threshold was set to 0.6, then there were many fewer false-positive predictions (as the

required confidence level is higher). Since the mask was being used to reduce false-

positive predictions, then the effect was less noticeable. We note that the median ‘no

mask‘ RMSE was about the same for both thresholds, demonstrating again that the me-

dian prediction value was more robust than the individual models. Figure 4.17 represents

another example, where the correlation with ground-truth was considerably different de-

pending on the chosen threshold. In our case, the correlation with the ground-truth was

higher with the threshold of 0.4, largely due to the models’ tendency to underestimate

change.
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Figure 4.17: A comparison of NDTCI timeline prediction correlation heatmaps by model

using a prediction threshold of 0.4 (left) and 0.6 (right).

Facility Name Country Production Start Year

Meliadine Canada 2019

Carrapateena Australia 2019

Ubuntu South Africa 2020

MetCoal Indonesia 2020

Merthyr Tydfil United Kingdom 2022

Iluka Western Australia Australia 2019

Table 4.2: Case study site information.

4.6 Change Detection Case Study Areas

Following the experimental analysis of the trained model performance on the evaluation

data from the OMS2CD dataset, the models were applied to additional unseen mining

sites as case studies for the proposed activity detection pipeline. The case study areas

were selected using a methodology similar to that described in Section 3.3.1, but the se-

lection criteria were different. We selected sites that had a production start (key ‘produc-

tion start’ in the Jasansky et al. database) in or after 2019, with the goal of demonstrating

clear changes in activity as the mining sites grew. Using the specified filter criteria, six

sites were found and their information was exported as GeoJSON data. Geojson.io was

again used for manual inspection, and six sites were selected: five from the Jasansky et

al. database, and one of additional interest (Table 4.2).
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Figure 4.18: Sentinel-2 image tiles of the Carrapateena mining site. The width and height

of each tile is 186×255 pixels, or 1.86 km×2.55 km with 10 m resolution. Left: the site

at the beginning of the target study period. Right: the site at the end of the target study

period. The active surface area of the mine appears to have grown significantly during

that time.

After site selection, GEE was again used to download the Sentinel-2 Level-2A tiles for

each region. The date range given was ±2 years from the start of production, and we

applied a cloud filter of 50%. For every two-month period, the least cloudy image for

each area was selected. Only the RGB bands were saved for each tile. After the data

was downloaded, images that were incomplete or completely occluded by clouds were

removed.

4.7 Case Study Analyses

For each case study location, we performed the same analyses that were used on the

evaluation data in Section 4.2. Without a ground-truth comparison, manual assessment

was required to determine the activity prediction accuracy. With that said, the achieved

activity prediction performance was very good, especially in areas where there was little

cloud occlusion and very few seasonal changes. In the appendices, we have provided an

extensive set of figures which demonstrate the results of our case study observations for

a selection of site areas.
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Figure 4.19: Timeline plot demonstrating the amount of surface area predicted to have

changed for each time interval (change is in m2).

For this section, the Carrapateena facility location is reviewed, which started production in

2019. Using the GEE pipeline, a contiguous series of Sentinel-2 tiles covering the dates

2019-01-25 to 2020-11-25 on a bi-monthly basis with no cloud occlusion was obtained.

The facility has been listed as an underground gold and copper mine, not open-pit1.

Even so, the visible surface changes were extensive enough during that time period to

still provide a meaningful assessment of mine activity. Figure 4.18 demonstrates the

difference in appearance between the start and end of the study period.

Using a prediction threshold of 0.4, the timeline of area change as assessed by the trained

DLCD models was plotted (Figure 4.19). The plot demonstrates how the surface activity

(measured as surface area change) continued to increase until the beginning of 2020,

and then decreased again as expansion slowed. The maximum median surface change

occurred between 2019-11-16 and 2020-01-15. Figure 4.20 (left) demonstrates a visu-

alisation of the µNDTCI, where the highest values are mapped to the most active areas

of the facility. Figure 4.20 (right) is a spatio-temporal visualisation which facilitates an

1While this facility is not an open-pit mine, we have chosen to review it as a case study using our pipeline
because it demonstrates the robustness of our activity detection methodology on many types of mine fa-
cilities. As previously stated, see the appendices for further examples of analysis run on open-pit mine
facilities
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understanding into when specific surface changes occurred in time. Using such a visual-

isation makes it easy to understand how the lower section of the site area was expanded

outward over time.

Figure 4.20: Left: Visualisation of the µNDTCI calculated using the change masks pre-

dicted by LSNet over the study period. Right: Visualisation demonstrating the spatio-

temporal changes at the facility. Vertical and horizontal axes are measured in pixels.

As a demonstration, the 10 m resolution µNDTCI image has been stacked on top of Google

Earth imagery from the site (Figure 4.21). Even though it is difficult to track exact surface

changes using the 10 m resolution Sentinel-2 tiles, the activity estimation provided by the

proposed DLCD methodology is sufficient to direct focus to specific areas which can later

be better-understood through high-resolution image sources. While such an approach

would require manual follow-up, the DLCD models still provide valuable insight into the

surface areas which are more active.
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Figure 4.21: Demonstration of overlaying the 10 m resolution µNDTCI on top of a much

higher resolution Google Earth image for observation.
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4.8 Observations on the Scale of Changes

Throughout the experimentation performed in this section, one phenomenon which has

consistently been observed is the trained models’ inability to identify small changes (those

which are five pixels or smaller in any one dimension). While some are identified, it

appears that generally the models find it difficult to identify such small changes. For

examples of such behaviour, see Appendix D and Appendix E. In Figure D.2 there are

significantly more small-scale changes in the ground-truth than in any of the model µNDTCI

predictions.

Why do the models miss small changes? It may be that the model architectures which

we have chosen and trained on the OMS2CD dataset simply were not intended to detect

changes which are less than five pixels across. The convolutional layers in the models

may have larger receptive fields, causing them to overlook minute details. Additionally, the

training data might not have insufficient examples of small changes, leading the models

to generalise them as noise or irrelevant information. The loss functions used during

training could also play a role; if they do not penalise missing small changes heavily, the

models might not prioritise detecting them.

Figure 4.22: A bi-temporal image pair example from the LEVIR-CD dataset. Left to right:

earlier image, later image, change mask label. The red box highlights just one of the

house changes, which we measured to cover an area of approximately 25×18 pixels.

Something to be considered is that the high-resolution CD datasets normally used as

benchmarks feature changes of a much larger scale. For example, in the LEVIR-CD

dataset, it is common for a single house to be represented by an area of approximately

20×20 pixels (Figure 4.22). In OMS2CD, that would be an area of 200 m×200 m. As
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such, even significant surface changes may present themselves in Sentinel-2 imagery as

differences of only a few pixels.

Overall, further investigation is needed to pinpoint the exact reasons for the missed

changes, and future work could focus on refining the selection of model architectures

or training strategies to address this limitation.
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Conclusions and

Recommendations

5.1 Discussion

We have explored the emerging application of deep learning for change detection in open-

pit mining areas as a way to monitor and quantify mining activity over time. As highlighted

in the literature review, remote sensing and deep learning have been applied in several

related domains that provide useful context:

• Identifying and mapping mining areas using satellite data and deep learning mod-

els like U-Nets (Balaniuk, Isupova, and Reece 2020; T. Chen et al. 2022). These

works focus on delineating mining sites, rather than tracking longitudinal changes

within mines. However, their mapping techniques could be combined with change

detection to locate active mining zones.

• Assessing environmental impacts through land cover change analysis (D. Zhu et

al. 2020; Nascimento et al. 2020). While environmental assessment is not a di-

rect focus of this dissertation, tracking mining activity over time could serve as an

important input for quantifying habitat destruction, vegetation loss, pollution levels,

and other mining impacts. Change detection provides key activity data to support

impact evaluation.
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• General deep learning approaches for remote sensing change detection (Bai et al.

2022; Jiang et al. 2022). Our work draws directly upon recent advances in domain-

agnostic change detection models like TinyCD and evaluates their effectiveness on

the novel application of monitoring mining operations.

• Using radar coherence data and indices like NDAI to measure activity levels in

mines (Moon and Lee 2021; L. Wang et al. 2021). We adapted this concept of a

normalised activity index for change detection predictions, proposing the NDTCI as

a proxy metric for mining intensity over time.

We have made a novel contribution by specialising in tracking changes in open-pit mines

using freely available Sentinel-2 multispectral data and state-of-the-art deep learning ar-

chitectures like TinyCD and LSNet. One of our key contributions is the introduction of

the OMS2CD dataset, containing over 2000 manually annotated image patches tailored

to mining-related changes like excavation, waste dumping, road construction, deforesta-

tion, and equipment activity. Most existing change detection datasets such as OSCD

focus solely on generic urban changes, rather than the diverse range of surface changes

relevant to mining operations. While many existing datasets highlight urban transforma-

tions, this new collection emphasises variations specific to mining, providing essential

training material to fine-tune general change detection algorithms for mining scenarios.

Through a series of experiments, we demonstrated how models like TinyCD can be

successfully fine-tuned using our mining-specific dataset to identify relevant changes in

open-pit mines, even though they were originally developed for urban settings. Among

the models tested, TinyCD achieved the highest performance in detecting mining-related

changes. This suggests that efficient deep learning architectures can generalise effec-

tively using methods like transfer learning, even with limited training data. Building on

indices like NDAI, we also introduced innovative methods to quantify and visualise mining

activity over time based on model change predictions. This included the NDTCI activity

index and cumulative change map overlays. Our validations results indicate a good cor-

relation between NDTCI activity measurements and human-annotated data from mining

sites.
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5.2 Recommendations

5.2.1 Enhancing Governance

The potential for transformation in the field of mine monitoring and governance is signif-

icant, particularly with the integration of automatic change detection systems that utilise

freely available data, such as that from Sentinel-2. The implementation of efficient deep

learning (DL) models like TinyCD could enable a shift towards automated, continuous

monitoring and analysis. This not only offers a more flexible and comprehensive alterna-

tive to manual inspections, but also takes advantage of free, open data.

Furthermore, the establishment of data and tool standards by regulators could create

interoperability between different monitoring approaches, enhancing the overall effective-

ness of their governance. In a similar vein, industry groups are encouraged to consider

voluntary self-monitoring using remote sensing technologies. By publishing their activi-

ties using standardised measurements, these groups can demonstrate their commitment

to transparency, sustainable development, and climate goals. Such advancements have

the potential to revolutionise the way we approach mining governance.

5.2.2 Improving Model Performance

There is great potential for enhancing model performance, particularly with the devel-

opment of a larger, more comprehensive annotated change detection dataset tailored

specifically to mining changes. Such a dataset could significantly improve the accuracy

and robustness of the models, thereby enhancing the reliability of the monitoring systems.

It is therefore recommended that future research in this area prioritise the publication of

more labelled data, ensuring coverage of a diverse range of geographies, mine types,

and land cover contexts. This would not only improve the performance of existing models

but also contribute to the development of more advanced, accurate monitoring systems

in the future. No matter the approach, more public datasets are needed. Many of the

promising models and methodologies that were identified in the literature review were

impossible to replicate due to the lack of availability of their labelled data.

Looking ahead, the exploration of multi-modal architectures, which combine optical, SAR,
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and other types of data, presents a promising avenue for future research. The fusion of

different sensor data can provide complementary information, potentially enhancing the

resilience of the monitoring systems to common challenges such as cloud cover and

speckle noise. Moreover, the use of different data types and spectral bands could offer a

more nuanced characterisation of surface mine land cover changes. This could lead to

more accurate and detailed monitoring.

5.2.3 Standardising Activity Metrics

Improving and standardising indices like NDTCI and NDAI could offer a better way to

track mining activities over time. The development of an open standard would facilitate

quantitative cross-comparisons, thereby improving the reliability and consistency of activ-

ity assessments. Moreover, an integrated measurement approach that combines various

indices (NDTCI, NDAI, MW-RSEI, DROTL, etc.) could be proposed as a unified activ-

ity index. The establishment of such a standardised metric could prove invaluable for

comparing different mining operations and shaping policy, thereby contributing to more

effective and informed governance of mining activities.

5.2.4 Empowering Communities

The advent of remote monitoring offers a powerful toolset for communities impacted

by mining activities, enabling them to independently track these activities and provide

evidence-based input into decision-making processes. It is crucial for researchers to

actively engage with these communities in the development of appropriate monitoring

systems and data standards, ensuring that the tools are accessible, user-friendly, and tai-

lored to their needs. Furthermore, providing global access to regular activity reports could

significantly enhance participation and accountability, empowering communities and fos-

tering a more transparent and inclusive approach to mining governance.

5.2.5 Summary

In conclusion, the priorities identified in this research—developing automated monitor-

ing systems, exploring multi-modal architectures, and standardising activity metrics for
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transparency—represent key areas of focus for the future. The applications proposed are

only a glimpse into the many capabilities of artificial intelligence in the domain of remote

monitoring. With affordable and accessible remote sensing capabilities, there is great

potential to revolutionise mining governance. Increased investment in this area is likely to

further amplify its potential impacts, underscoring the need for more research, and active

community participation. These elements will be crucial in harnessing the full potential of

these technologies to create a more transparent and sustainable mining sector.

5.3 Reflection

Through this work, we have established a proof-of-concept for the use of deep learning

and open-access satellite data in monitoring mining activity over time. Venturing into

an application domain that has yet to be extensively explored, we have showcased the

adaptability of models like TinyCD in detecting relevant mining changes, even with mini-

mal labelled training data. The methods we have proposed for quantifying and visualising

activity serve as practical tools for temporal analysis.

A significant achievement of this work is the demonstration of deep learning’s potential

in this novel application, despite the challenge of limited training data. We overcame this

key barrier through the use of transfer learning and efficient models like TinyCD, which

generalise well from scarce labels. The creation of a tailored, mining-focused dataset was

also a pivotal step, given that most existing benchmarks are centred on urban change

detection.

However, our proposed methods are not without limitations. The geographic diversity of

our annotated dataset is limited, which restricts the generalisation of our models. The

10-metre resolution limit of Sentinel-2 also poses a challenge to change interpretability,

particularly when compared to VHR data, which can provide more visual detail. Seasonal

variations and weather events can also confound mining change detection. Furthermore,

more robust statistical validation on a diverse range of sites is needed to fully characterise

the real-world performance of our methods.

Despite these limitations, we have proposed an affordable, adaptable approach to moni-
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toring mining areas over time using freely available data and models. This approach has

the potential to support environmental assessment and responsible mining on a global

scale. While refinements are necessary, our techniques have demonstrated the potential

of deep learning to unlock new value from open-access satellite data. With continued

improvements, we believe that our approach could pave the way for greater transparency

and sustainability in the mining industry.
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Appendix A

Ideal Case Study Example: Iluka

Western Australia Facility

In this appendix, we review another case study area example. At the Iluka Western

Australia site we were able to obtain a contiguous series of cloud-free images, which

allows for an accurate assessment of spatio-temporal changes. The Iluka site is listed

in the Jasansky et al. database to have started production in 2019, and to be producing

primarily iron ore products. The time period of observation in our downloaded Sentinel-

2 tiles is from 2019-01-27 until 2020-11-07, and during that time there is a substantial

amount of visible surface change (Figure A.1). Our quantitative visual analysis results

are given in figures A.2, A.3, and A.4. Figure A.4 demonstrates how the facility expanded

towards the south-east over time, similar to the visible expansion of the Carrapateena site

in Section 4.7.
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APPENDIX A. IDEAL CASE STUDY EXAMPLE: ILUKA WESTERN AUSTRALIA

FACILITY

Figure A.1: Sentinel-2 image tiles of the Iluka Western Australia mining site. The width

and height of each tile is 439×455 pixels, 4.39 km×4.55 km with 10 metre resolution.

Left: the site at the beginning of the target study period. Right: the site at the end of the

target study period. The active surface area visibly grows during the target time period.

Figure A.2: Timeline plot demonstrating the amount of surface area predicted to have

changed for each time interval (change is in m2) at the Iluka Western Australia facility.
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APPENDIX A. IDEAL CASE STUDY EXAMPLE: ILUKA WESTERN AUSTRALIA

FACILITY

Figure A.3: Visualisation of the µNDTCI calculated using the change masks predicted by

LSNet over the study period for the Iluka Western Australia facility.
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APPENDIX A. IDEAL CASE STUDY EXAMPLE: ILUKA WESTERN AUSTRALIA

FACILITY

Figure A.4: Visualisation demonstrating the spatio-temporal changes at the Iluka Western

Australia facility. Vertical and horizontal axes are measured in pixels.
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Appendix B

Non-ideal Case Study Example:

MetCoal Facility

In this appendix, we review a case study area example which tends to be occluded by

clouds. The site is listed coal mine under the facility name ’MetCoal’ in the Jasansky et al.

with a production start date of 2019. The time period of observation in our downloaded

Sentinel-2 tiles is from 2019-01-06 until 2020-11-16. As the site is in Indonesia, many of

the Sentinel-2 tiles include significant visible cloud cover. Figure B.1 shows an example of

how such occlusion tricks the LSNet model into making false-positive and false-negative

predictions due to the changing surface lighting caused by cloud cover.

In the quantitative change assessments in figures B.2, B.3, and B.4 there are signifi-

cant artefacts caused by the changing cloud cover which has been falsely predicted as

change. In Figure B.2 the false-positive predictions are visible where DDPM-CD and

LSNet predict a higher level of change than the other two models in the first and last time

period intervals. However, we see that using the median of the three model predictions

helps to ignore the outlier changes caused by cloud cover movements. In Figure B.3 and

Figure B.4 there are spatio-temporal changes throughout the image that have arisen from

cloud cover movements.
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APPENDIX B. NON-IDEAL CASE STUDY EXAMPLE: METCOAL FACILITY

Figure B.1: Cloud-occluded prediction example from MetCoal site. From left to right:

Sentinel-2 ‘pre’ image tile; Sentinel-2 ‘post’ image tile; LSNet model change predictions.

In the prediction mask, white represents TP changes, yellow represents FP changes, and

blue represents FN changes.

Figure B.2: Timeline plot demonstrating the amount of surface area predicted to have

changed for each time interval (change is in m2) at the MetCoal facility.
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APPENDIX B. NON-IDEAL CASE STUDY EXAMPLE: METCOAL FACILITY

Figure B.3: Visualisation of the µNDTCI calculated using the change masks predicted by

LSNet over the study period for the MetCoal facility.
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APPENDIX B. NON-IDEAL CASE STUDY EXAMPLE: METCOAL FACILITY

Figure B.4: Visualisation demonstrating the spatio-temporal changes at the MetCoal fa-

cility. Vertical and horizontal axes are measured in pixels.
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Appendix C

Model Prediction Comparison:

Ubuntu Facility Mask Predictions

We present in this appendix a side-by-side comparison of predicted changes for the same

bi-temporal image pair from different models (Figure C.2). The changes were predicted

by each of the three models using two different positive-class thresholds (0.4 and 0.6). We

selected this particular pair of images to compare because it is particularly challenging

due to visible seasonal changes such as vegetation growth (Figure C.1).

It is difficult to say which model performs the ‘best’ on this specific image pair, because

some changed features are quite small and we have not prepared a ground-truth for

comparison. With that said, it is easy to see how the number of change-class predictions

decreases when the positive-class threshold is increased. Additionally, we can note that

at the given thresholds, LSNet and DDPM-CD seem to be much more sensitive to the

visible changes. None of the models incorrectly predict change in the areas where there

is only vegetative growth, which demonstrates that they are all robust against that type of

image noise.
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APPENDIX C. MODEL PREDICTION COMPARISON: UBUNTU FACILITY MASK

PREDICTIONS

Figure C.1: Ubuntu case study facility Sentinel-2 bi-temporal image pair. Left: facility

at 2019-09-19. Right: facility at 2019-11-28. Both images have been processed with

histogram equalisation to make the terrain features more easily visible.
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APPENDIX C. MODEL PREDICTION COMPARISON: UBUNTU FACILITY MASK

PREDICTIONS

(a) TinyCD change predictions.

(b) LSNet change predictions.

(c) DDPM-CD change predictions.

Figure C.2: A comparison of the predicted masks for the bi-temporal image pair given in

Figure C.1. The left column predictions were all produced using a positive-class threshold

of 0.4, while the right column predictions were produced with a threshold of 0.6.
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Appendix D

Model Prediction Comparison:

NDTCI for Guizhou Facility

We present in this appendix a side-by-side comparison of the predicted µNDTCI for the

Guizhou facility from the OMS2CD dataset. The changes were predicted by each of the

three models using two different positive-class thresholds (0.4 and 0.6). Figure D.1 shows

a bi-temporal pair for the first and last Sentinel-2 image tiles in our downloaded series,

which were used for the µNDTCI calculations. The ground-truth µNDTCI is given in Figure

D.2, and the predictions for each model are shown in Figure D.3. Note that the AOI mask

discussed in Section 4.4 was used to focus the predictions of the models and reduce

false-positives. By comparing the predicted µNDTCI maps to the ground-truth, it appears

that one of the greatest differences across all models is the absence of small changes.
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APPENDIX D. MODEL PREDICTION COMPARISON: NDTCI FOR GUIZHOU

FACILITY

Figure D.1: Guizhou facility Sentinel-2 bi-temporal image pair for the beginning and end

of the dataset time period. Left: facility at 2019-04-01. Right: facility at 2020-04-01. Both

images have been processed with histogram equalisation to make the terrain features

more easily visible.

Figure D.2: Ground-truth µNDTCI visualisation for the Guizhou facility. Calculated using

the annotated ground-truth masks.
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APPENDIX D. MODEL PREDICTION COMPARISON: NDTCI FOR GUIZHOU

FACILITY

(a) TinyCD µNDTCI predictions.

(b) LSNet µNDTCI predictions.

(c) DDPM-CD µNDTCI predictions.

Figure D.3: A comparison of the predicted µNDTCI maps for the Guizhou facility in the time

period represented in Figure D.1. The left column predictions were all produced using a

positive-class threshold of 0.4, while the right column predictions were produced with a

threshold of 0.6.
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Appendix E

Model Prediction Comparison:

NDTCI for Mianchi Facility

We present in this appendix a side-by-side comparison of the predicted µNDTCI for the

Mianchi facility from the OMS2CD dataset. The changes were predicted by each of the

three models using two different positive-class thresholds (0.4 and 0.6). Figure E.1 shows

a bi-temporal pair for the first and last Sentinel-2 image tiles in our downloaded series,

which were used for the µNDTCI calculations. The ground-truth µNDTCI is given in Figure

E.2, and the predictions for each model are shown in Figure E.3. Note that the AOI mask

discussed in Section 4.4 was used.
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APPENDIX E. MODEL PREDICTION COMPARISON: NDTCI FOR MIANCHI FACILITY

Figure E.1: Mianchi facility Sentinel-2 bi-temporal image pair for the beginning and end

of the dataset time period. Left: facility at 2019-03-01. Right: facility at 2020-04-01. Both

images have been processed with histogram equalisation to make the terrain features

more easily visible.
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APPENDIX E. MODEL PREDICTION COMPARISON: NDTCI FOR MIANCHI FACILITY

Figure E.2: Ground-truth µNDTCI visualisation for the Mianchi facility. Calculated using the

annotated ground-truth masks.
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APPENDIX E. MODEL PREDICTION COMPARISON: NDTCI FOR MIANCHI FACILITY

(a) TinyCD µNDTCI predictions.

(b) LSNet µNDTCI predictions.

(c) DDPM-CD µNDTCI predictions.

Figure E.3: A comparison of the predicted µNDTCI maps for the Mianchi facility in the time

period represented in Figure E.1. The left column predictions were all produced using a

positive-class threshold of 0.4, while the right column predictions were produced with a

threshold of 0.6.
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Appendix F

Model Prediction Comparison:

NDTCI and Spatio-Temporal Change

for Ubuntu Facility

We present in this appendix a side-by-side comparison of the predicted µNDTCI and spatio-

temporal area changes for the Ubuntu facility. The changes were predicted by each of

the three models using a prediction threshold of 0.4. Figure F.1 shows a bi-temporal pair

for the first and last Sentinel-2 image tiles in our downloaded series which were used for

the µNDTCI calculations. The predicted µNDTCI and spatio-temporal change maps for each

model are shown in Figure F.2.
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APPENDIX F. MODEL PREDICTION COMPARISON: NDTCI AND

SPATIO-TEMPORAL CHANGE FOR UBUNTU FACILITY

Figure F.1: Ubuntu facility Sentinel-2 bi-temporal image pair for the beginning and end of

the dataset time period. Left: facility at 2019-01-12. Right: facility at 2021-11-02. Both

images have been processed with histogram equalisation to make the terrain features

more easily visible.
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APPENDIX F. MODEL PREDICTION COMPARISON: NDTCI AND

SPATIO-TEMPORAL CHANGE FOR UBUNTU FACILITY

(a) TinyCD µNDTCI predictions.

(b) LSNet µNDTCI predictions.

(c) DDPM-CD µNDTCI predictions.

Figure F.2: A comparison of the predicted µNDTCI and spatio-temporal change maps for

the Ubuntu facility in the time period represented in Figure F.1. The left column is the

µNDTCI map for each model architecture, while the right column is the spatio-temporal

change map. All were produced with a threshold of 0.4.
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Appendix G

Data Domain Differences

As highlighted in Section 2.3.1, our target domain, which comprises Sentinel-2 tiles of

mining areas, exhibits marked distinctions when compared to benchmark datasets like

OSCD, OMCD, and more. These disparities are evident in aspects such as the magnitude

and nature of surface alterations and object attributes. For a visual comparison drawn

from each dataset, refer to Figure G.1. Section 4.8 delves deeper into the significance of

these scale differences.

Figure G.1: Scale and feature comparison on image patches across three datasets. Left

to right: OMS2CD, OMCD (Li et al. 2023) (©2023 IEEE), OSCD (Daudt et al. 2018)

(modified under CC BY 4.0). Each image covers a surface area of 1.8 km×1.8 km. In the

OSCD and OMS2CD datasets, spatial resolution is 10 m. In OMCD, the spatial resolution

is much higher at 2 m, which is demonstrated by the visibility of finer surface details. Note

also that OSCD is focused on urban change, so the image tiles cover developed urban

areas.

In our experimental analysis, it became evident that the dataset distributions’ discrepan-
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APPENDIX G. DATA DOMAIN DIFFERENCES

Model Training Dataset Val F1-score Test F1-score

TinyCD LEVIR-CD 0.00036 0.0

TinyCD OSCD 0.14 0.16

TinyCD OMCD 0.002 0.0

LSNet CDD 0.0 0.0

DDPM-CD LEVIR-CD 0.00021 0.00049

Table G.1: Summary of Model Performances

cies made it impractical to employ DLCD inference on Sentinel-2 tiles with models trained

on conventional CD benchmark datasets. Table G.1 showcases the performance metrics

of TinyCD, LSNet, and DDPM-CD as evaluated on OMS2CD, post their training on these

benchmark datasets. The results, without further fine-tuning on OMS2CD data, are ev-

idently not satisfactory. However, it’s noteworthy that a fine-tuning process on OSCD

yielded the most promising F1-scores, peaking at 0.14/0.16. This might be attributed to

OSCD being the sole Sentinel-2 dataset we explored.
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Appendix H

OMS2CD Dataset Structure and

Description

The dataset, designed for use in Deep Learning Change Detection (DLCD) models, is

organized into a hierarchical structure. This appendix provides a comprehensive break-

down of the dataset’s components and their respective locations.

H.1 Directory Structure

Dataset Root Directory

|-- GeoTIFF RGB: s2_<facility_name>_<coordinates>_<YYYY-MM-DD>.tif

|-- CSVs: mapping.csv, train.csv, val.csv, test.csv

|-- area_mask/ - Binary Area .tif Files

|-- mask/ - Change Label .tif Files

H.2 Detailed Description

To provide further detail on the structure of the dataset:

• GeoTIFF RGB Images: Located directly in the root directory, these images adhere

to a specific naming convention:
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APPENDIX H. OMS2CD DATASET STRUCTURE AND DESCRIPTION

s2 <facility name> <coordinates> <YYYY-MM-DD>.tif.

Each image consists of three channels (RGB) with pixel values ranging from 0 to

255.

• CSV Files: The ‘mapping.csv‘ in the root directory details which images constitute

each bi-temporal image pair. Additionally, ‘train.csv‘, ‘val.csv‘, and ‘test.csv‘ specify

the facilities of the respective dataset splits.

• Subdirectories:

– ‘area mask‘: Houses single-channel GeoTIFF files representing binary area

masks. These images possess pixel values in the range of [0-255]. Each area

mask file follows the file naming convention of <facility> .tif

– ‘mask‘: Contains single-channel GeoTIFF files denoting change label masks,

with pixel values also in the [0-255] range. Each mask file follows the naming

convention of <facility> <####>.tif where ‘####’ is a four-digit integer.

H.3 ‘mapping.csv’

Each row of the ‘mapping.csv’ file has four columns: ‘id’, ‘imageA’, ‘imageB’, and ‘mask’.

For each row, the corresponding labelled file in the ‘mask/‘ directory can be found by

combining that row’s facility name and that row’s ‘id’. The AOI mask can be found using

the filename given in the ‘mask’ column. Please note that this file was created before

the dataset was hand-labelled, which means that there are more rows than there are

existing image-mask sets. Our provided Python utility class (discussed below) takes this

into account by skipping row entries that contain a non-existent imageA, imageB, or mask

file.

H.4 Python Utility Class

For streamlining interactions with this dataset and its preparation for DLCD models, a

Python class named ‘OMS2CD‘ is provided in the project’s source code. Further details

about this class can be found in Appendix I.
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Appendix I

Source Code Repository

The source code which was developed for the purposes of carrying out the experiments

described in this dissertation is available in an online repository1. Please refer to the

README for information about specific files and the licensing of the code therein.

The OMS2CD and OMS2CDDataModule classes contained within the source repository

provide an example for how to load and the provided OMS2CD dataset for training and

inference. They utilise the rasterio and tiler Python libraries to load the dataset Geo-

TIFF files and break them into small patches which serve as model inputs. For extensive

examples demonstrating how to use the OMS2CD classes, see the provided notebook

files. For a simple case, see the code below. It creates an instance of the dataset class,

with the root directory at ‘OMS2CD/’, uses the default patch size (256 pixels) and stride

(128 pixels).

1 # Prepare the OMS2CD dataset for use

2 dataset = OMS2CD(root=’OMS2CD ’, split=’val’, bands=’rgb’)

3 sample = dataset [0]

4

5 # Or , if using with PyTorch Lightning.

6 datamodule = OMS2CDDataModule(root=’OMS2CD ’, bands=’rgb’,

batch_size =16, tile_mode="constant", stride =100)

1https://github.com/Dibz15/OpenMineChangeDetection
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